These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 314514)

  • 1. Slow sodium conductance inactivation in frog skeletal muscle fibres [proceedings].
    Harvey C; Rojas E; Suarez-Isla BA
    J Physiol; 1979 Jun; 291():56-P. PubMed ID: 314514
    [No Abstract]   [Full Text] [Related]  

  • 2. Development of excitability in denervated slow muscle fibres of the frog [proceedings].
    Lehouelleur J; Schmidt H
    J Physiol; 1978 Nov; 284():91P-92P. PubMed ID: 310463
    [No Abstract]   [Full Text] [Related]  

  • 3. Proceedings: Relations between membrane potential, sodium currents and contraction in frog twitch muscle fibres.
    Caillé J; Ildefonse M; Rougier O
    J Physiol; 1975 Jul; 249(1):26P-28P. PubMed ID: 1151860
    [No Abstract]   [Full Text] [Related]  

  • 4. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability.
    Ruff RL; Simoncini L; Stühmer W
    Muscle Nerve; 1988 May; 11(5):502-10. PubMed ID: 2453799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opentime heterogeneity during bursting of sodium channels in frog skeletal muscle.
    Patlak JB; Ortiz M; Horn R
    Biophys J; 1986 Mar; 49(3):773-7. PubMed ID: 2421796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the blocked inactivation of sodium channels on intracellular and extracellular action potentials from isolated frog muscle fibres.
    Radicheva N
    Acta Physiol Pharmacol Bulg; 1986; 12(3):27-31. PubMed ID: 2433894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature on the inward rectifier and gramicidin A-induced channels in the membrane of frog skeletal muscle fibres.
    Caffier G; Shvinka NE
    Gen Physiol Biophys; 1986 Feb; 5(1):47-51. PubMed ID: 2429894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle.
    Spalding BC
    J Physiol; 1980 Aug; 305():485-500. PubMed ID: 6255148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of cold on ionic conductance in frog sartorius muscle].
    Conte Camerino D; Bryant SH
    Boll Soc Ital Biol Sper; 1974 Feb; 50(4):201-6. PubMed ID: 4548652
    [No Abstract]   [Full Text] [Related]  

  • 10. Facilitation of slow inward current in frog atrium [proceedings].
    Noble S; Shimoni Y
    J Physiol; 1979 Jul; 292():74P-75P. PubMed ID: 314978
    [No Abstract]   [Full Text] [Related]  

  • 11. Appropriate conditions to record activation of fast Ca2+ channels in frog skeletal muscle (Rana pipiens).
    García J; Stefani E
    Pflugers Arch; 1987 May; 408(6):646-8. PubMed ID: 2439988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Potential-dependent ion currents in the membrane of the striated muscle of the lamprey].
    Derke Sh; Nasledov GA
    Neirofiziologiia; 1986; 18(5):629-36. PubMed ID: 2430201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanism for the fall in resting potassium conductance of frog skeletal muscle fibres occurring under extreme hyperpolarization [proceedings].
    Standen NB; Stanfield PR
    J Physiol; 1978 Sep; 282():18P-19P. PubMed ID: 722517
    [No Abstract]   [Full Text] [Related]  

  • 14. Further evidence of Na+ conductance in frog stomach in Cl- -free media.
    Holloman TL; Schwartz M; Carrasquer G
    Proc Soc Exp Biol Med; 1979 Jul; 161(3):244-6. PubMed ID: 37523
    [No Abstract]   [Full Text] [Related]  

  • 15. Na/K selectivity, ion conductances and net fluxes of K+ and Na'n metabolically exhausted muscle fibres.
    Fink R; Grocki K; Lüttgau HC
    Eur J Cell Biol; 1980 Apr; 21(1):109-15. PubMed ID: 6966571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic sodium current of human skeletal muscle.
    Zite-Ferenczy F; Matthias K; Rüdel R
    Biomed Biochim Acta; 1986; 45(1-2):S9-14. PubMed ID: 2421719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells.
    Beam KG; Knudson CM; Powell JA
    Nature; 1986 Mar 13-19; 320(6058):168-70. PubMed ID: 2419767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of primycin on some electric properties of the frog skeletal muscle.
    Gesztelyi I; Kónya L; Kövér A
    Acta Physiol Acad Sci Hung; 1980; 55(1):1-11. PubMed ID: 6249072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The frog interosseal muscle fiber as a new model for patch clamp studies of chemosensitive- and voltage-sensitive ion channels: actions of acetylcholine and batrachotoxin.
    Allen CN; Akaike A; Albuquerque EX
    J Physiol (Paris); 1984; 79(4):338-43. PubMed ID: 6099417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of potential-dependent calcium channels in skeletal muscles during frog ontogenesis].
    Nasledov GA; Derke Sh
    Dokl Akad Nauk SSSR; 1987; 292(1):253-6. PubMed ID: 2434291
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.