These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 31451402)
1. Application of high-resolution CT images information in complicated infection of lung tumors. Liu S; Liu H; Li P; Jiang L J Infect Public Health; 2021 Mar; 14(3):418-422. PubMed ID: 31451402 [TBL] [Abstract][Full Text] [Related]
2. Design Computer-Aided Diagnosis System Based on Chest CT Evaluation of Pulmonary Nodules. Wang H; Li Y; Liu S; Yue X Comput Math Methods Med; 2022; 2022():7729524. PubMed ID: 35047057 [TBL] [Abstract][Full Text] [Related]
3. A method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and density. Kobayashi H; Ohkubo M; Narita A; Marasinghe JC; Murao K; Matsumoto T; Sone S; Wada S Br J Radiol; 2017 Feb; 90(1070):20160313. PubMed ID: 27897029 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database. Jacobs C; van Rikxoort EM; Murphy K; Prokop M; Schaefer-Prokop CM; van Ginneken B Eur Radiol; 2016 Jul; 26(7):2139-47. PubMed ID: 26443601 [TBL] [Abstract][Full Text] [Related]
5. Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning. Zhang S; Sun F; Wang N; Zhang C; Yu Q; Zhang M; Babyn P; Zhong H J Digit Imaging; 2019 Dec; 32(6):995-1007. PubMed ID: 31044393 [TBL] [Abstract][Full Text] [Related]
6. Computer-aided Detection of Subsolid Nodules at Chest CT: Improved Performance with Deep Learning-based CT Section Thickness Reduction. Park S; Lee SM; Kim W; Park H; Jung KH; Do KH; Seo JB Radiology; 2021 Apr; 299(1):211-219. PubMed ID: 33560190 [TBL] [Abstract][Full Text] [Related]
7. Efficiency of a computer-aided diagnosis (CAD) system with deep learning in detection of pulmonary nodules on 1-mm-thick images of computed tomography. Kozuka T; Matsukubo Y; Kadoba T; Oda T; Suzuki A; Hyodo T; Im S; Kaida H; Yagyu Y; Tsurusaki M; Matsuki M; Ishii K Jpn J Radiol; 2020 Nov; 38(11):1052-1061. PubMed ID: 32592003 [TBL] [Abstract][Full Text] [Related]
8. Overview of Computer Aided Detection and Computer Aided Diagnosis Systems for Lung Nodule Detection in Computed Tomography. Ziyad SR; Radha V; Vayyapuri T Curr Med Imaging Rev; 2020; 16(1):16-26. PubMed ID: 31989890 [TBL] [Abstract][Full Text] [Related]
9. An Assisted Diagnosis System for Detection of Early Pulmonary Nodule in Computed Tomography Images. Liu JK; Jiang HY; Gao MD; He CG; Wang Y; Wang P; Ma H; Li Y J Med Syst; 2017 Feb; 41(2):30. PubMed ID: 28032305 [TBL] [Abstract][Full Text] [Related]
10. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Cascio D; Magro R; Fauci F; Iacomi M; Raso G Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972 [TBL] [Abstract][Full Text] [Related]
11. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning. Huang W; Xue Y; Wu Y PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053 [TBL] [Abstract][Full Text] [Related]
12. Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Wang Z; Xin J; Sun P; Lin Z; Yao Y; Gao X Comput Methods Programs Biomed; 2018 Aug; 162():197-209. PubMed ID: 29903487 [TBL] [Abstract][Full Text] [Related]
13. Potential lung nodules identification for characterization by variable multistep threshold and shape indices from CT images. Iqbal S; Iqbal K; Arif F; Shaukat A; Khanum A Comput Math Methods Med; 2014; 2014():241647. PubMed ID: 25506388 [TBL] [Abstract][Full Text] [Related]
14. Computer-aided diagnosis (CAD) of subsolid nodules: Evaluation of a commercial CAD system. Benzakoun J; Bommart S; Coste J; Chassagnon G; Lederlin M; Boussouar S; Revel MP Eur J Radiol; 2016 Oct; 85(10):1728-1734. PubMed ID: 27666609 [TBL] [Abstract][Full Text] [Related]
15. High-resolution CT with new model-based iterative reconstruction with resolution preference algorithm in evaluations of lung nodules: Comparison with conventional model-based iterative reconstruction and adaptive statistical iterative reconstruction. Yasaka K; Katsura M; Hanaoka S; Sato J; Ohtomo K Eur J Radiol; 2016 Mar; 85(3):599-606. PubMed ID: 26860673 [TBL] [Abstract][Full Text] [Related]
16. Value of a Computer-aided Detection System Based on Chest Tomosynthesis Imaging for the Detection of Pulmonary Nodules. Yamada Y; Shiomi E; Hashimoto M; Abe T; Matsusako M; Saida Y; Ogawa K Radiology; 2018 Apr; 287(1):333-339. PubMed ID: 29206596 [TBL] [Abstract][Full Text] [Related]
17. The Added Value of Computer-aided Detection of Small Pulmonary Nodules and Missed Lung Cancers. Cai J; Xu D; Liu S; Cham MD J Thorac Imaging; 2018 Nov; 33(6):390-395. PubMed ID: 30239461 [TBL] [Abstract][Full Text] [Related]
18. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification. Lavanya M; Kannan PM Asian Pac J Cancer Prev; 2017 Dec; 18(12):3395-3399. PubMed ID: 29286609 [TBL] [Abstract][Full Text] [Related]
19. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function. Lo SB; Freedman MT; Gillis LB; White CS; Mun SK AJR Am J Roentgenol; 2018 Mar; 210(3):480-488. PubMed ID: 29336601 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis in lung nodule assessment. Goldin JG; Brown MS; Petkovska I J Thorac Imaging; 2008 May; 23(2):97-104. PubMed ID: 18520567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]