BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31451634)

  • 21. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium.
    Yan J; Aldrich RW
    Nature; 2010 Jul; 466(7305):513-6. PubMed ID: 20613726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse.
    Kearney G; Zorrilla de San Martín J; Vattino LG; Elgoyhen AB; Wedemeyer C; Katz E
    J Neurosci; 2019 May; 39(18):3360-3375. PubMed ID: 30755493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells.
    Kong WJ; Guo CK; Zhang XW; Chen X; Zhang S; Li GQ; Li ZW; Van Cauwenberge P
    Brain Res; 2007 Jan; 1129(1):110-5. PubMed ID: 17157279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+-activated K channels in parotid acinar cells: The functional basis for the hyperpolarized activation of BK channels.
    Romanenko VG; Thompson J; Begenisich T
    Channels (Austin); 2010; 4(4):278-88. PubMed ID: 20519930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular basis for differential modulation of BK channel voltage-dependent gating by auxiliary γ subunits.
    Li Q; Fan F; Kwak HR; Yan J
    J Gen Physiol; 2015 Jun; 145(6):543-54. PubMed ID: 26009545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea.
    Jeng JY; Carlton AJ; Johnson SL; Brown SDM; Holley MC; Bowl MR; Marcotti W
    J Physiol; 2021 Jan; 599(1):269-287. PubMed ID: 33179774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
    Langer P; Gründer S; Rüsch A
    J Comp Neurol; 2003 Jan; 455(2):198-209. PubMed ID: 12454985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca(2+) and Ca(2+)-activated K(+) channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse.
    Zorrilla de San Martín J; Pyott S; Ballestero J; Katz E
    J Neurosci; 2010 Sep; 30(36):12157-67. PubMed ID: 20826678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of BK channels by auxiliary γ subunits.
    Zhang J; Yan J
    Front Physiol; 2014; 5():401. PubMed ID: 25360119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knockout of the LRRC26 subunit reveals a primary role of LRRC26-containing BK channels in secretory epithelial cells.
    Yang C; Gonzalez-Perez V; Mukaibo T; Melvin JE; Xia XM; Lingle CJ
    Proc Natl Acad Sci U S A; 2017 May; 114(18):E3739-E3747. PubMed ID: 28416688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits.
    Pyott SJ; Meredith AL; Fodor AA; Vázquez AE; Yamoah EN; Aldrich RW
    J Biol Chem; 2007 Feb; 282(5):3312-24. PubMed ID: 17135251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP activates non-selective cation channels and calcium release in inner hair cells of the guinea-pig cochlea.
    Sugasawa M; Erostegui C; Blanchet C; Dulon D
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):707-18. PubMed ID: 8815205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of the activation of the inner-hair-cell basolateral K
    Altoè A; Pulkki V; Verhulst S
    Hear Res; 2018 Jul; 364():68-80. PubMed ID: 29678326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RBP2 stabilizes slow Cav1.3 Ca
    Ortner NJ; Pinggera A; Hofer NT; Siller A; Brandt N; Raffeiner A; Vilusic K; Lang I; Blum K; Obermair GJ; Stefan E; Engel J; Striessnig J
    Pflugers Arch; 2020 Jan; 472(1):3-25. PubMed ID: 31848688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea.
    Jeng JY; Ceriani F; Hendry A; Johnson SL; Yen P; Simmons DD; Kros CJ; Marcotti W
    J Physiol; 2020 Jan; 598(1):151-170. PubMed ID: 31661723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. β4-subunit increases Slo responsiveness to physiological Ca2+ concentrations and together with β1 reduces surface expression of Slo in hair cells.
    Bai JP; Surguchev A; Navaratnam D
    Am J Physiol Cell Physiol; 2011 Mar; 300(3):C435-46. PubMed ID: 21178105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BK channels mediate cholinergic inhibition of high frequency cochlear hair cells.
    Wersinger E; McLean WJ; Fuchs PA; Pyott SJ
    PLoS One; 2010 Nov; 5(11):e13836. PubMed ID: 21079807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extrasynaptic localization of inactivating calcium-activated potassium channels in mouse inner hair cells.
    Pyott SJ; Glowatzki E; Trimmer JS; Aldrich RW
    J Neurosci; 2004 Oct; 24(43):9469-74. PubMed ID: 15509733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ba2+ currents in inner and outer hair cells of mice lacking the voltage-dependent Ca2+ channel subunits beta3 or beta4.
    Kuhn S; Knirsch M; Rüttiger L; Kasperek S; Winter H; Freichel M; Flockerzi V; Knipper M; Engel J
    Channels (Austin); 2009; 3(5):366-76. PubMed ID: 19755851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.