These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 31451768)
1. Protein kinase N controls a lysosomal lipid switch to facilitate nutrient signalling via mTORC1. Wallroth A; Koch PA; Marat AL; Krause E; Haucke V Nat Cell Biol; 2019 Sep; 21(9):1093-1101. PubMed ID: 31451768 [TBL] [Abstract][Full Text] [Related]
2. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. Kazyken D; Lentz SI; Wadley M; Fingar DC J Biol Chem; 2023 Sep; 299(9):105097. PubMed ID: 37507012 [TBL] [Abstract][Full Text] [Related]
3. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma. Jhanwar-Uniyal M; Dominguez JF; Mohan AL; Tobias ME; Gandhi CD Adv Biol Regul; 2022 Jan; 83():100854. PubMed ID: 34996736 [TBL] [Abstract][Full Text] [Related]
4. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235 [TBL] [Abstract][Full Text] [Related]
5. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Wang B; Jie Z; Joo D; Ordureau A; Liu P; Gan W; Guo J; Zhang J; North BJ; Dai X; Cheng X; Bian X; Zhang L; Harper JW; Sun SC; Wei W Nature; 2017 May; 545(7654):365-369. PubMed ID: 28489822 [TBL] [Abstract][Full Text] [Related]
6. Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1. Ghomlaghi M; Yang G; Shin SY; James DE; Nguyen LK PLoS Comput Biol; 2021 Sep; 17(9):e1008513. PubMed ID: 34529665 [TBL] [Abstract][Full Text] [Related]
7. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism. Chen CH; Kiyan V; Zhylkibayev AA; Kazyken D; Bulgakova O; Page KE; Bersimbaev RI; Spooner E; Sarbassov DD J Biol Chem; 2013 Sep; 288(38):27019-27030. PubMed ID: 23928304 [TBL] [Abstract][Full Text] [Related]
8. Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Jhanwar-Uniyal M; Amin AG; Cooper JB; Das K; Schmidt MH; Murali R Adv Biol Regul; 2017 May; 64():39-48. PubMed ID: 28189457 [TBL] [Abstract][Full Text] [Related]
9. Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets. Jhanwar-Uniyal M; Zeller SL; Spirollari E; Das M; Hanft SJ; Gandhi CD Cells; 2024 Feb; 13(5):. PubMed ID: 38474373 [TBL] [Abstract][Full Text] [Related]
10. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Jhanwar-Uniyal M; Wainwright JV; Mohan AL; Tobias ME; Murali R; Gandhi CD; Schmidt MH Adv Biol Regul; 2019 May; 72():51-62. PubMed ID: 31010692 [TBL] [Abstract][Full Text] [Related]
11. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes. Weinberg MA Anticancer Drugs; 2016 Jul; 27(6):475-87. PubMed ID: 26918392 [TBL] [Abstract][Full Text] [Related]
12. Growing knowledge of the mTOR signaling network. Huang K; Fingar DC Semin Cell Dev Biol; 2014 Dec; 36():79-90. PubMed ID: 25242279 [TBL] [Abstract][Full Text] [Related]
13. FilGAP regulates tumor growth in Glioma through the regulation of mTORC1 and mTORC2. Tsutsumi K; Nohara A; Tanaka T; Murano M; Miyagaki Y; Ohta Y Sci Rep; 2023 Dec; 13(1):20956. PubMed ID: 38065968 [TBL] [Abstract][Full Text] [Related]
14. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674 [TBL] [Abstract][Full Text] [Related]
15. mTOR complex 1 activity is required to maintain the canonical endocytic recycling pathway against lysosomal delivery. Dauner K; Eid W; Raghupathy R; Presley JF; Zha X J Biol Chem; 2017 Apr; 292(14):5737-5747. PubMed ID: 28196862 [TBL] [Abstract][Full Text] [Related]
16. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. Miyazaki M; McCarthy JJ; Fedele MJ; Esser KA J Physiol; 2011 Apr; 589(Pt 7):1831-46. PubMed ID: 21300751 [TBL] [Abstract][Full Text] [Related]
17. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy. Das F; Ghosh-Choudhury N; Mariappan MM; Kasinath BS; Choudhury GG Am J Physiol Cell Physiol; 2016 Apr; 310(7):C583-96. PubMed ID: 26739493 [TBL] [Abstract][Full Text] [Related]
18. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Menon S; Dibble CC; Talbott G; Hoxhaj G; Valvezan AJ; Takahashi H; Cantley LC; Manning BD Cell; 2014 Feb; 156(4):771-85. PubMed ID: 24529379 [TBL] [Abstract][Full Text] [Related]
19. The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase. Mori S; Nada S; Kimura H; Tajima S; Takahashi Y; Kitamura A; Oneyama C; Okada M PLoS One; 2014; 9(2):e88891. PubMed ID: 24558442 [TBL] [Abstract][Full Text] [Related]
20. CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages. Pacitto R; Gaeta I; Swanson JA; Yoshida S J Leukoc Biol; 2017 Mar; 101(3):683-692. PubMed ID: 28250113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]