These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 31451938)

  • 1. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas.
    Bharwad K; Rajkumar S
    World J Microbiol Biotechnol; 2019 Aug; 35(9):140. PubMed ID: 31451938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida.
    La Rosa R; Nogales J; Rojo F
    Environ Microbiol; 2015 Sep; 17(9):3362-78. PubMed ID: 25711694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25.
    Liu Y; Gokhale CS; Rainey PB; Zhang XX
    Mol Microbiol; 2017 Aug; 105(4):589-605. PubMed ID: 28557013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossing bacterial boundaries: The carbon catabolite repression system Crc-Hfq of Pseudomonas putida KT2440 as a tool to control translation in E. coli.
    Lu C; Ramalho TP; Bisschops MMM; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    N Biotechnol; 2023 Nov; 77():20-29. PubMed ID: 37348756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression.
    Moreno R; Fonseca P; Rojo F
    Mol Microbiol; 2012 Jan; 83(1):24-40. PubMed ID: 22053874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression.
    Sonnleitner E; Bläsi U
    PLoS Genet; 2014 Jun; 10(6):e1004440. PubMed ID: 24945892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa.
    Sonnleitner E; Wulf A; Campagne S; Pei XY; Wolfinger MT; Forlani G; Prindl K; Abdou L; Resch A; Allain FH; Luisi BF; Urlaub H; Bläsi U
    Nucleic Acids Res; 2018 Feb; 46(3):1470-1485. PubMed ID: 29244160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation.
    Sonnleitner E; Prindl K; Bläsi U
    PLoS One; 2017; 12(7):e0180887. PubMed ID: 28686727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression.
    Fonseca P; Moreno R; Rojo F
    Environ Microbiol; 2013 Jan; 15(1):24-35. PubMed ID: 22360597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment.
    Rojo F
    FEMS Microbiol Rev; 2010 Sep; 34(5):658-84. PubMed ID: 20412307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida.
    Sánchez-Hevia DL; Yuste L; Moreno R; Rojo F
    Environ Microbiol; 2018 Oct; 20(10):3484-3503. PubMed ID: 29708644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000.
    Filiatrault MJ; Stodghill PV; Wilson J; Butcher BG; Chen H; Myers CR; Cartinhour SW
    RNA Biol; 2013 Feb; 10(2):245-55. PubMed ID: 23353577
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Gil-Gil T; Valverde JR; Martínez JL; Corona F
    Microbiol Spectr; 2023 Dec; 11(6):e0235023. PubMed ID: 37902380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.
    Moreno R; Hernández-Arranz S; La Rosa R; Yuste L; Madhushani A; Shingler V; Rojo F
    Environ Microbiol; 2015 Jan; 17(1):105-18. PubMed ID: 24803210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the sRNAs CrcZ and CrcY modulate the strength of carbon catabolite repression under diazotrophic or non-diazotrophic growing conditions in Azotobacter vinelandii.
    Martínez-Valenzuela M; Guzmán J; Moreno S; Ahumada-Manuel CL; Espín G; Núñez C
    PLoS One; 2018; 13(12):e0208975. PubMed ID: 30543677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifaceted Interplay between Hfq and the Small RNA GssA in
    Santoro S; Paganin C; Gilardi S; Brignoli T; Bertoni G; Ferrara S
    mBio; 2023 Feb; 14(1):e0241822. PubMed ID: 36475775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating tastes: physiological contributions of the Hfq-binding small RNA Spot 42 to catabolite repression.
    Beisel CL; Storz G
    RNA Biol; 2011; 8(5):766-70. PubMed ID: 21788732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose uptake in Azotobacter vinelandii occurs through a GluP transporter that is under the control of the CbrA/CbrB and Hfq-Crc systems.
    Quiroz-Rocha E; Moreno R; Hernández-Ortíz A; Fragoso-Jiménez JC; Muriel-Millán LF; Guzmán J; Espín G; Rojo F; Núñez C
    Sci Rep; 2017 Apr; 7(1):858. PubMed ID: 28404995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rewiring of Gene Expression in
    Rozner M; Nukarinen E; Wolfinger MT; Amman F; Weckwerth W; Bläsi U; Sonnleitner E
    Front Microbiol; 2022; 13():919539. PubMed ID: 35832820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What are the signals that control catabolite repression in Pseudomonas?
    Moreno R; Rojo F
    Microb Biotechnol; 2024 Jan; 17(1):e14407. PubMed ID: 38227132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.