These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 31452009)
1. A method of generating multivariate non-normal random numbers with desired multivariate skewness and kurtosis. Qu W; Liu H; Zhang Z Behav Res Methods; 2020 Jun; 52(3):939-946. PubMed ID: 31452009 [TBL] [Abstract][Full Text] [Related]
2. Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Cain MK; Zhang Z; Yuan KH Behav Res Methods; 2017 Oct; 49(5):1716-1735. PubMed ID: 27752968 [TBL] [Abstract][Full Text] [Related]
3. Robust transformation with applications to structural equation modelling. Yuan KH; Chan W; Bentler PM Br J Math Stat Psychol; 2000 May; 53 ( Pt 1)():31-50. PubMed ID: 10895521 [TBL] [Abstract][Full Text] [Related]
4. The effect of normality and outliers on bivariate correlation coefficients in psychology: A Monte Carlo simulation. Ventura-León J; Peña-Calero BN; Burga-León A J Gen Psychol; 2023; 150(4):405-422. PubMed ID: 35792742 [TBL] [Abstract][Full Text] [Related]
5. Generating Multivariate Ordinal Data via Entropy Principles. Lee Y; Kaplan D Psychometrika; 2018 Mar; 83(1):156-181. PubMed ID: 29359242 [TBL] [Abstract][Full Text] [Related]
6. Effects of skewness and kurtosis on normal-theory based maximum likelihood test statistic in multilevel structural equation modeling. Ryu E Behav Res Methods; 2011 Dec; 43(4):1066-74. PubMed ID: 21671139 [TBL] [Abstract][Full Text] [Related]
7. The effect of skewness and kurtosis on the robustness of linear mixed models. Arnau J; Bendayan R; Blanca MJ; Bono R Behav Res Methods; 2013 Sep; 45(3):873-9. PubMed ID: 23299397 [TBL] [Abstract][Full Text] [Related]
8. How to Generate Non-normal Data for Simulation of Structural Equation Models. Mattson S Multivariate Behav Res; 1997 Oct; 32(4):355-73. PubMed ID: 26777072 [TBL] [Abstract][Full Text] [Related]
9. Asymptotic confidence intervals for the Pearson correlation via skewness and kurtosis. Bishara AJ; Li J; Nash T Br J Math Stat Psychol; 2018 Feb; 71(1):167-185. PubMed ID: 28872186 [TBL] [Abstract][Full Text] [Related]
10. Nonrandom sampling in human genetics: skewness and kurtosis. Chakraborty R; Hanis CL Genet Epidemiol; 1987; 4(2):87-101. PubMed ID: 3582959 [TBL] [Abstract][Full Text] [Related]
11. Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy. Xiang J; Maue E; Fan Y; Qi L; Mangano FT; Greiner H; Tenney J Brain Commun; 2020; 2(1):fcaa036. PubMed ID: 32954294 [TBL] [Abstract][Full Text] [Related]
12. A Cautionary Note on the Use of the Vale and Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes. Olvera Astivia OL; Zumbo BD Educ Psychol Meas; 2015 Aug; 75(4):541-567. PubMed ID: 29795832 [TBL] [Abstract][Full Text] [Related]
13. Kurtosis and skewness of density histograms on inspiratory and expiratory CT scans in smokers. Yamashiro T; Matsuoka S; Estépar RS; Bartholmai BJ; Diaz A; Ross JC; Murayama S; Silverman EK; Hatabu H; Washko GR COPD; 2011 Feb; 8(1):13-20. PubMed ID: 21299474 [TBL] [Abstract][Full Text] [Related]
14. Theoretical considerations when simulating data from the g-and-h family of distributions. Astivia OLO; Edward K Br J Math Stat Psychol; 2022 Nov; 75(3):699-727. PubMed ID: 35635727 [TBL] [Abstract][Full Text] [Related]
16. Lot-Size Models with Uncertain Demand Considering Its Skewness/Kurtosis and Stochastic Programming Applied to Hospital Pharmacy with Sensor-Related COVID-19 Data. Rojas F; Leiva V; Huerta M; Martin-Barreiro C Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372434 [TBL] [Abstract][Full Text] [Related]
17. Dynamics diagnosis of the COVID-19 deaths using the Pearson diagram. Gonçalves ADS; Fernandes LHS; Nascimento ADC Chaos Solitons Fractals; 2022 Nov; 164():112634. PubMed ID: 36118941 [TBL] [Abstract][Full Text] [Related]
18. A comparison via simulation of least squares Lehmann-Scheffé estimators of two variances and heritability with those of restricted maximum likelihood. Slanger WD; Carlson JK J Anim Sci; 2003 Aug; 81(8):1950-8. PubMed ID: 12926777 [TBL] [Abstract][Full Text] [Related]
19. A Simple Simulation Technique for Nonnormal Data with Prespecified Skewness, Kurtosis, and Covariance Matrix. Foldnes N; Olsson UH Multivariate Behav Res; 2016; 51(2-3):207-19. PubMed ID: 27014851 [TBL] [Abstract][Full Text] [Related]
20. Design efficiency for imbalanced multilevel data. Cools W; Van den Noortgate W; Onghena P Behav Res Methods; 2009 Feb; 41(1):192-203. PubMed ID: 19182140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]