These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31452108)

  • 41. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of the ATTRACT Coarse-Grained Docking and Atomistic Refinement for Predicting Peptide-Protein Interactions.
    Schindler C; Zacharias M
    Methods Mol Biol; 2017; 1561():49-68. PubMed ID: 28236233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein structure-based drug design: from docking to molecular dynamics.
    Śledź P; Caflisch A
    Curr Opin Struct Biol; 2018 Feb; 48():93-102. PubMed ID: 29149726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrostatic Energy in Protein-Ligand Complexes.
    Bitencourt-Ferreira G; Veit-Acosta M; de Azevedo WF
    Methods Mol Biol; 2019; 2053():67-77. PubMed ID: 31452099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein.
    Fu Y; Zhao J; Chen Z
    Comput Math Methods Med; 2018; 2018():3502514. PubMed ID: 30627209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of Ligand Transport in Receptors Using CaverDock.
    Hozzová J; Vávra O; Bednář D; Filipovič J
    Methods Mol Biol; 2021; 2266():105-124. PubMed ID: 33759123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GPCR Homology Model Generation for Lead Optimization.
    Tautermann CS
    Methods Mol Biol; 2018; 1705():115-131. PubMed ID: 29188560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein-protein interface analysis and hot spots identification for chemical ligand design.
    Chen J; Ma X; Yuan Y; Pei J; Lai L
    Curr Pharm Des; 2014; 20(8):1192-200. PubMed ID: 23713772
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein-Ligand Docking in Drug Design: Performance Assessment and Binding-Pose Selection.
    Ballante F
    Methods Mol Biol; 2018; 1824():67-88. PubMed ID: 30039402
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How good are state-of-the-art docking tools in predicting ligand binding modes in protein-protein interfaces?
    Krüger DM; Jessen G; Gohlke H
    J Chem Inf Model; 2012 Nov; 52(11):2807-11. PubMed ID: 23072688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting the bioactive conformations of macrocycles: a molecular dynamics-based docking procedure with DynaDock.
    Ugur I; Schroft M; Marion A; Glaser M; Antes I
    J Mol Model; 2019 Jun; 25(7):197. PubMed ID: 31222506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy.
    Segura J; Marín-López MA; Jones PF; Oliva B; Fernandez-Fuentes N
    PLoS One; 2015; 10(3):e0118107. PubMed ID: 25763838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.
    Bhakat S; Åberg E; Söderhjelm P
    J Comput Aided Mol Des; 2018 Jan; 32(1):59-73. PubMed ID: 29052792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. InterEvDock: a docking server to predict the structure of protein-protein interactions using evolutionary information.
    Yu J; Vavrusa M; Andreani J; Rey J; Tufféry P; Guerois R
    Nucleic Acids Res; 2016 Jul; 44(W1):W542-9. PubMed ID: 27131368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of novel lead molecules against RhoG protein as cancer target - a computational study.
    Dasari T; Kondagari B; Dulapalli R; Abdelmonsef AH; Mukkera T; Padmarao LS; Malkhed V; Vuruputuri U
    J Biomol Struct Dyn; 2017 Nov; 35(14):3119-3139. PubMed ID: 27691842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking.
    Baek M; Shin WH; Chung HW; Seok C
    J Comput Aided Mol Des; 2017 Jul; 31(7):653-666. PubMed ID: 28623486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Search strategies and evaluation in protein-protein docking: principles, advances and challenges.
    Huang SY
    Drug Discov Today; 2014 Aug; 19(8):1081-96. PubMed ID: 24594385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.