BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31452170)

  • 1. High-Throughput Screening of Drugs Against the Growth of Cryptosporidium parvum In Vitro by qRT-PCR.
    Zhang H; Zhu G
    Methods Mol Biol; 2020; 2052():319-334. PubMed ID: 31452170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Culture of Cryptosporidium parvum Using Hollow Fiber Bioreactor: Applications for Simultaneous Pharmacokinetic and Pharmacodynamic Evaluation of Test Compounds.
    Yarlett N; Morada M; Gobin M; Van Voorhis W; Arnold S
    Methods Mol Biol; 2020; 2052():335-350. PubMed ID: 31452171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Content Screening for Cryptosporidium Drug Discovery.
    Love MS; McNamara CW
    Methods Mol Biol; 2020; 2052():303-317. PubMed ID: 31452169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro.
    Cai X; Woods KM; Upton SJ; Zhu G
    Antimicrob Agents Chemother; 2005 Nov; 49(11):4437-42. PubMed ID: 16251280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP).
    Fritzler JM; Zhu G
    J Antimicrob Chemother; 2012 Mar; 67(3):609-17. PubMed ID: 22167242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory activity of chitosan nanoparticles against Cryptosporidium parvum oocysts.
    Ahmed SA; El-Mahallawy HS; Karanis P
    Parasitol Res; 2019 Jul; 118(7):2053-2063. PubMed ID: 31187224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-induced Hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants.
    Bajszár G; Dekonenko A
    Appl Environ Microbiol; 2010 Mar; 76(6):1732-9. PubMed ID: 20118357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell Culture Infectivity to Assess Chlorine Disinfection of Cryptosporidium Oocysts in Water.
    Murphy JL; Arrowood MJ
    Methods Mol Biol; 2020; 2052():283-302. PubMed ID: 31452168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro.
    Zhang H; Zhu G
    Front Microbiol; 2015; 6():991. PubMed ID: 26441920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of putative anti-cryptosporidial drugs in an in vitro culture system.
    Schupfner M; Greif G; Lendner M; Daugschies A; Lippuner C; von Samson-Himmelstjerna G; Krücken J
    Parasitol Res; 2013 Aug; 112 Suppl 1():149-62. PubMed ID: 23765343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-protozoal activity of extracts from chicory (Cichorium intybus) against Cryptosporidium parvum in cell culture.
    Woolsey ID; Valente AH; Williams AR; Thamsborg SM; Simonsen HT; Enemark HL
    Sci Rep; 2019 Dec; 9(1):20414. PubMed ID: 31892721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of differences between DNA content of cell-cultured and freely suspended oocysts of Cryptosporidium parvum and their suitability as DNA standards in qPCR.
    Woolsey ID; Blomstrand B; Øines Ø; Enemark HL
    Parasit Vectors; 2019 Dec; 12(1):596. PubMed ID: 31856894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase.
    Sharling L; Liu X; Gollapalli DR; Maurya SK; Hedstrom L; Striepen B
    PLoS Negl Trop Dis; 2010 Aug; 4(8):e794. PubMed ID: 20706578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of drugs against Cryptosporidium parvum using a simple in vitro screening method.
    Armson A; Meloni BP; Reynoldson JA; Thompson RC
    FEMS Microbiol Lett; 1999 Sep; 178(2):227-33. PubMed ID: 10499272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver Nanoparticles Decrease the Viability of Cryptosporidium parvum Oocysts.
    Cameron P; Gaiser BK; Bhandari B; Bartley PM; Katzer F; Bridle H
    Appl Environ Microbiol; 2016 Jan; 82(2):431-7. PubMed ID: 26497464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions.
    Shahiduzzaman M; Dyachenko V; Keidel J; Schmäschke R; Daugschies A
    Vet Parasitol; 2010 Jan; 167(1):43-9. PubMed ID: 19850414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro assessment of anticryptosporidial efficacy and cytotoxicity of adenosine analogues using a SYBR Green real-time PCR method.
    Arai T; Kimata I; Kitade Y; Nakamoto K; Tokoro M
    J Antimicrob Chemother; 2011 Mar; 66(3):560-3. PubMed ID: 21393228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts.
    Fontaine M; Guillot E
    FEMS Microbiol Lett; 2003 Sep; 226(2):237-43. PubMed ID: 14553917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse Models for Use in Cryptosporidium Infection Studies and Quantification of Parasite Burden Using Flow Cytometry, qPCR, and Histopathology.
    Sonzogni-Desautels K; Mead JR; Ndao M
    Methods Mol Biol; 2020; 2052():229-251. PubMed ID: 31452166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of curcumin on Cryptosporidium parvum in vitro.
    Shahiduzzaman M; Dyachenko V; Khalafalla RE; Desouky AY; Daugschies A
    Parasitol Res; 2009 Oct; 105(4):1155-61. PubMed ID: 19557435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.