These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31452235)

  • 1. A spatially discrete approximation to log-Gaussian Cox processes for modelling aggregated disease count data.
    Johnson O; Diggle P; Giorgi E
    Stat Med; 2019 Oct; 38(24):4871-4887. PubMed ID: 31452235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Log Gaussian Cox processes and spatially aggregated disease incidence data.
    Li Y; Brown P; Gesink DC; Rue H
    Stat Methods Med Res; 2012 Oct; 21(5):479-507. PubMed ID: 22544855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package.
    Lee D
    Spat Spatiotemporal Epidemiol; 2020 Aug; 34():100353. PubMed ID: 32807395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of spatio-temporal variation in plague incidence in Madagascar from 1980 to 2007.
    Giorgi E; Kreppel K; Diggle PJ; Caminade C; Ratsitorahina M; Rajerison M; Baylis M
    Spat Spatiotemporal Epidemiol; 2016 Nov; 19():125-135. PubMed ID: 27839576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Mar; 4():33-49. PubMed ID: 23481252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and spatio-temporal models with R-INLA.
    Blangiardo M; Cameletti M; Baio G; Rue H
    Spat Spatiotemporal Epidemiol; 2013 Dec; 7():39-55. PubMed ID: 24377114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The integrated nested Laplace approximation applied to spatial log-Gaussian Cox process models.
    Flagg K; Hoegh A
    J Appl Stat; 2023; 50(5):1128-1151. PubMed ID: 37009597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions.
    Roy V; Evangelou E; Zhu Z
    Biometrics; 2016 Mar; 72(1):289-98. PubMed ID: 26331903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of discrete spatial variation in epidemiology with SAS using GLIMMIX.
    Rasmussen S
    Comput Methods Programs Biomed; 2004 Oct; 76(1):83-9. PubMed ID: 15313544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved log-Gaussian approximation for over-dispersed Poisson regression: Application to spatial analysis of COVID-19.
    Murakami D; Matsui T
    PLoS One; 2022; 17(1):e0260836. PubMed ID: 34995283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-inflated spatio-temporal models for disease mapping.
    Torabi M
    Biom J; 2017 May; 59(3):430-444. PubMed ID: 28187237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling spatio-temporal variations of substance abuse mortality in Iran using a log-Gaussian Cox point process.
    Rostami M; Mohammadi Y; Jalilian A; Nazparvar B
    Spat Spatiotemporal Epidemiol; 2017 Aug; 22():15-25. PubMed ID: 28760264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global multivariate point pattern models for rain type occurrence.
    Jun M; Schumacher C; Saravanan R
    Spat Stat; 2019 Jun; 31():. PubMed ID: 31886123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximate inference for disease mapping with sparse Gaussian processes.
    Vanhatalo J; Pietiläinen V; Vehtari A
    Stat Med; 2010 Jul; 29(15):1580-607. PubMed ID: 20552572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.
    Carroll R; Lawson AB; Faes C; Kirby RS; Aregay M; Watjou K
    Spat Spatiotemporal Epidemiol; 2015; 14-15():45-54. PubMed ID: 26530822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time series analysis of fMRI data: Spatial modelling and Bayesian computation.
    Teng M; Johnson TD; Nathoo FS
    Stat Med; 2018 Aug; 37(18):2753-2770. PubMed ID: 29717508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete versus continuous domain models for disease mapping.
    Konstantinoudis G; Schuhmacher D; Rue H; Spycher BD
    Spat Spatiotemporal Epidemiol; 2020 Feb; 32():100319. PubMed ID: 32007284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal modeling of infectious diseases by integrating compartment and point process models.
    Amaral AVR; González JA; Moraga P
    Stoch Environ Res Risk Assess; 2023; 37(4):1519-1533. PubMed ID: 36530377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of spatial scales and spatial smoothing on the outcome of bayesian spatial model.
    Kang SY; McGree J; Mengersen K
    PLoS One; 2013; 8(10):e75957. PubMed ID: 24146799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.