BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31452670)

  • 1. Rapid diagnosis of nitrogen status in rice based on Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).
    Wu K; Du C; Ma F; Shen Y; Liang D; Zhou J
    Plant Methods; 2019; 15():94. PubMed ID: 31452670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of FTIR-PAS in Rapid Assessment of Rice Quality under Climate Change Conditions.
    Wei L; Ma F; Du C
    Foods; 2021 Jan; 10(1):. PubMed ID: 33466600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ detection of rice leaf cuticle responses to nitrogen supplies by depth-profiling Fourier transform photoacoustic spectroscopy.
    Lv G; Du C; Ma F; Shen Y; Zhou J
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117759. PubMed ID: 31708462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of Leaf Cuticles to Rice Blast: Detection and Identification Using Depth-Profiling Fourier Transform Mid-Infrared Photoacoustic Spectroscopy.
    Gaoqiang L; Changwen D; Fei M; Yazhen S; Jianmin Z
    Plant Dis; 2020 Mar; 104(3):847-852. PubMed ID: 31940445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of fourier transform infrared photoacoustic spectroscopy for quantification of nutrient contents and their plant availability in manure and digestate.
    Wali K; Khan HA; Sica P; Van Henten EJ; Meers E; Brunn S
    Heliyon; 2024 Apr; 10(7):e28487. PubMed ID: 38596044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and Nondestructive Detection of Pesticide Residues by Depth-Profiling Fourier Transform Infrared Photoacoustic Spectroscopy.
    Lv G; Du C; Ma F; Shen Y; Zhou J
    ACS Omega; 2018 Mar; 3(3):3548-3553. PubMed ID: 31458606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the soil mid-infrared photoacoustic spectroscopy].
    Du CW; Zhou JM; Wang HY; Zhang JB; Zhu AN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1242-5. PubMed ID: 18800696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of protein biomass by Fourier transform infrared-photoacoustic spectroscopy.
    Gordon SH; Greene RV; Freer SN; James C
    Biotechnol Appl Biochem; 1990 Feb; 12(1):1-10. PubMed ID: 2178631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and nondestructive determination of protein content in rapeseeds (Brassica napus L.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS).
    Lu Y; Du C; Yu C; Zhou J
    J Sci Food Agric; 2014 Aug; 94(11):2239-45. PubMed ID: 24374740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing.
    Tang YL; Huang JF; Cai SH; Wang RC
    Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three different Fourier-transform mid-infrared sampling techniques to characterize bio-organic samples.
    Bekiaris G; Peltre C; Barsberg ST; Bruun S; Sørensen KM; Engelsen SB; Magid J; Hansen M; Jensen LS
    J Environ Qual; 2020 Sep; 49(5):1310-1321. PubMed ID: 33016439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on rice blast, corn and broad bean rust leaves by FTIR spectroscopy].
    Ou QH; Zhao XX; Zhou XP; Liu G; Li L; Zhang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Sep; 32(9):2389-92. PubMed ID: 23240403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR-PAS: a powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products.
    Bekiaris G; Bruun S; Peltre C; Houot S; Jensen LS
    Waste Manag; 2015 May; 39():45-56. PubMed ID: 25795481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling.
    Sivakumar V; Wang R; Hastings G
    Biochemistry; 2005 Feb; 44(6):1880-93. PubMed ID: 15697214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterization of lased root surfaces using Fourier transform infrared photoacoustic spectroscopy.
    Spencer P; Trylovich DJ; Cobb CM
    J Periodontol; 1992 Jul; 63(7):633-6. PubMed ID: 1507041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy.
    Bekiaris G; Triolo JM; Peltre C; Pedersen L; Jensen LS; Bruun S
    Bioresour Technol; 2015 Dec; 197():475-81. PubMed ID: 26369276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug penetration as studied by noninvasive methods: fourier transform infrared-attenuated total reflection, fourier transform infrared, and ultraviolet photoacoustic spectroscopy.
    Hanh BD; Neubert RH; Wartewig S; Christ A; Hentzsch C
    J Pharm Sci; 2000 Sep; 89(9):1106-13. PubMed ID: 10944375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [FTIR spectra of endangered plants Ulmus elongata and its correlation to soil nitrogen].
    Zhang ZX; Liu P; Kang HJ; Liao CC; Pan CC; Li CH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1255-9. PubMed ID: 18800699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbal Medicine Characterization Perspectives Using Advanced FTIR Sample Techniques - Diffuse Reflectance (DRIFT) and Photoacoustic Spectroscopy (PAS).
    Brangule A; Šukele R; Bandere D
    Front Plant Sci; 2020; 11():356. PubMed ID: 32362902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Model construction and application for nitrogen nutrition monitoring and diagnosis in double-cropping rice of Jiangxi Province, China].
    Li YD; Cao ZS; Sun BF; Ye C; Shu SF; Huang JB; Wang KJ; Tian YC
    Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):433-440. PubMed ID: 32476335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.