These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31452673)

  • 1. Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system.
    Dobbels AA; Lorenz AJ
    Plant Methods; 2019; 15():97. PubMed ID: 31452673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-Based Scoring of Soybean Iron Deficiency Chlorosis Using RGB Imaging and Statistical Learning.
    Bai G; Jenkins S; Yuan W; Graef GL; Ge Y
    Front Plant Sci; 2018; 9():1002. PubMed ID: 30050552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Off-Target Dicamba Damage on Soybean Using UAV Imagery and Deep Learning.
    Tian F; Vieira CC; Zhou J; Zhou J; Chen P
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Soybean Lodging Using UAV Imagery and Machine Learning.
    Sarkar S; Zhou J; Scaboo A; Zhou J; Aloysius N; Lim TT
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress.
    Waters BM; Amundsen K; Graef G
    Front Plant Sci; 2018; 9():10. PubMed ID: 29403520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines.
    Wang J; McClean PE; Lee R; Goos RJ; Helms T
    Theor Appl Genet; 2008 Apr; 116(6):777-87. PubMed ID: 18292984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a controlled-environment assay to induce iron deficiency chlorosis in soybean by adjusting calcium carbonates, pH, and nodulation.
    Merry R; Espina MJ; Lorenz AJ; Stupar RM
    Plant Methods; 2022 Mar; 18(1):36. PubMed ID: 35313896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Fine-Mapping of a Soybean Quantitative Trait Locus on Chromosome 5 Conferring Tolerance to Iron Deficiency Chlorosis.
    Merry R; Butenhoff K; Campbell BW; Michno JM; Wang D; Orf JH; Lorenz AJ; Stupar RM
    Plant Genome; 2019 Nov; 12(3):1-13. PubMed ID: 33016589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer vision and machine learning for robust phenotyping in genome-wide studies.
    Zhang J; Naik HS; Assefa T; Sarkar S; Reddy RV; Singh A; Ganapathysubramanian B; Singh AK
    Sci Rep; 2017 Mar; 7():44048. PubMed ID: 28272456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yield prediction by machine learning from UAS-based mulit-sensor data fusion in soybean.
    Herrero-Huerta M; Rodriguez-Gonzalvez P; Rainey KM
    Plant Methods; 2020; 16():78. PubMed ID: 32514286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean.
    Kohlhase DR; O'Rourke JA; Graham MA
    Front Plant Sci; 2024; 15():1295952. PubMed ID: 38476685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the efficiency of soybean breeding with high-throughput canopy phenotyping.
    Moreira FF; Hearst AA; Cherkauer KA; Rainey KM
    Plant Methods; 2019; 15():139. PubMed ID: 31827576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictions from algorithmic modeling result in better decisions than from data modeling for soybean iron deficiency chlorosis.
    Xu Z; Kurek A; Cannon SB; Beavis WD
    PLoS One; 2021; 16(7):e0240948. PubMed ID: 34242220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining Short-Term Responses to a Long-Term Problem: RNA-Seq Analyses of Iron Deficiency Chlorosis Tolerant Soybean.
    Moran Lauter AN; Rutter L; Cook D; O'Rourke JA; Graham MA
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing Early Transcriptomic Responses of 18 Soybean (
    Kohlhase DR; McCabe CE; Singh AK; O'Rourke JA; Graham MA
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canopy Roughness: A New Phenotypic Trait to Estimate Aboveground Biomass from Unmanned Aerial System.
    Herrero-Huerta M; Bucksch A; Puttonen E; Rainey KM
    Plant Phenomics; 2020; 2020():6735967. PubMed ID: 33575668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing Growth-Associated Molecular Markers Via High-Throughput Phenotyping in Spinach.
    Awika HO; Bedre R; Yeom J; Marconi TG; Enciso J; Mandadi KK; Jung J; Avila CA
    Plant Genome; 2019 Nov; 12(3):1-19. PubMed ID: 33016585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.