These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 3145275)

  • 41. Extracellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise.
    Hirche H; Schumacher E; Hagemann H
    Pflugers Arch; 1980 Sep; 387(3):231-7. PubMed ID: 7191989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maximal lactic capacity at altitude: effect of bicarbonate loading.
    Kayser B; Ferretti G; Grassi B; Binzoni T; Cerretelli P
    J Appl Physiol (1985); 1993 Sep; 75(3):1070-4. PubMed ID: 8226513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrolyte shifts across the artificial lung in patients on extracorporeal membrane oxygenation: interdependence between partial pressure of carbon dioxide and strong ion difference.
    Langer T; Scotti E; Carlesso E; Protti A; Zani L; Chierichetti M; Caironi P; Gattinoni L
    J Crit Care; 2015 Feb; 30(1):2-6. PubMed ID: 25307980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Base excess] vs [strong ion difference]. Which is more helpful?
    Schlichtig R
    Adv Exp Med Biol; 1997; 411():91-5. PubMed ID: 9269415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Newborn puppy cerebral acid-base regulation in experimental asphyxia and recovery.
    Nattie EE; Edwards WH; Marin-Padilla M
    J Appl Physiol Respir Environ Exerc Physiol; 1984 May; 56(5):1178-86. PubMed ID: 6327580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An obsession with CO2.
    Jones NL
    Appl Physiol Nutr Metab; 2008 Aug; 33(4):641-50. PubMed ID: 18641706
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lactate and acid-base exchange during brief intense contractions of skeletal muscle in situ.
    Brechue WF; Stainsby WN
    J Appl Physiol (1985); 1994 Jul; 77(1):223-30. PubMed ID: 7961237
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders.
    Wagner PD; Araoz M; Boushel R; Calbet JA; Jessen B; Rådegran G; Spielvogel H; Søndegaard H; Wagner H; Saltin B
    J Appl Physiol (1985); 2002 Apr; 92(4):1393-400. PubMed ID: 11896002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative cerebrospinal fluid acid-base balance in acute respiratory alkalosis.
    Javaheri S; Corbett W; Wagner K; Adams JM
    Am J Respir Crit Care Med; 1994 Jul; 150(1):78-82. PubMed ID: 8025777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lactate content and pH in muscle obtained after dynamic exercise.
    Sahlin K; Harris RC; Nylind B; Hultman E
    Pflugers Arch; 1976 Dec; 367(2):143-9. PubMed ID: 13343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Forearm muscle metabolism studied using (31)P-MRS during progressive exercise to fatigue after Acz administration.
    Kowalchuk JM; Smith SA; Weening BS; Marsh GD; Paterson DH
    J Appl Physiol (1985); 2000 Jul; 89(1):200-9. PubMed ID: 10904053
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations.
    Edge J; Eynon N; McKenna MJ; Goodman CA; Harris RC; Bishop DJ
    Exp Physiol; 2013 Feb; 98(2):481-90. PubMed ID: 22923232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reexamination of Stewart's quantitative analysis of acid-base status.
    Weinstein Y; Magazanik A; Grodjinovsky A; Inbar O; Dlin RA; Stewart PA
    Med Sci Sports Exerc; 1991 Nov; 23(11):1270-5. PubMed ID: 1766343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of blood gases and acid-base measurements in arterial, arterialized venous, and venous blood during short-term maximal exercise.
    Linderman J; Fahey TD; Lauten G; Brooker AS; Bird D; Dolinar B; Musselman J; Lewis S; Kirk L
    Eur J Appl Physiol Occup Physiol; 1990; 61(3-4):294-301. PubMed ID: 2126507
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contribution of erythrocytes to the control of the electrolyte changes of exercise.
    McKelvie RS; Lindinger MI; Heigenhauser GJ; Jones NL
    Can J Physiol Pharmacol; 1991 Jul; 69(7):984-93. PubMed ID: 1954568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blood biochemical status of miniature swine during submaximal and exhaustive exercise.
    Wilkerson JE; Sanders TM; Bloor CM
    Med Sci Sports Exerc; 1986 Apr; 18(2):180-5. PubMed ID: 3517548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of 13CO2 elimination after ingestion of 13C bicarbonate: the effects of exercise and acid base balance.
    Leese GP; Nicoll AE; Varnier M; Thompson J; Scrimgeour CM; Rennie MJ
    Eur J Clin Invest; 1994 Dec; 24(12):818-23. PubMed ID: 7705376
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W; Wasserman K; Casaburi R; Pórszász J; Maehara K; French W
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of PH on muscle glycolysis during exercise.
    Sutton JR; Jones NL; Toews CJ
    Clin Sci (Lond); 1981 Sep; 61(3):331-8. PubMed ID: 7261554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intracellular and extracellular acid-base status and H+ exchange with the environment after exhaustive exercise in the rainbow trout.
    Milligan CL; Wood CM
    J Exp Biol; 1986 Jul; 123():93-121. PubMed ID: 3091755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.