BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31452990)

  • 41. Multiscale joint segmentation method for retinal optical coherence tomography images using a bidirectional wave algorithm and improved graph theory.
    Lou S; Chen X; Wang Y; Cai H; Chen S; Liu L
    Opt Express; 2023 Feb; 31(4):6862-6876. PubMed ID: 36823933
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search.
    Zang P; Wang J; Hormel TT; Liu L; Huang D; Jia Y
    Biomed Opt Express; 2019 Aug; 10(8):4340-4352. PubMed ID: 31453015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effectual accuracy of OCT image retinal segmentation with the aid of speckle noise reduction and boundary edge detection strategy.
    Mittal P; Bhatnagar C
    J Microsc; 2023 Mar; 289(3):164-179. PubMed ID: 36373509
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Boundary-enhanced semi-supervised retinal layer segmentation in optical coherence tomography images using fewer labels.
    Lu Y; Shen Y; Xing X; Ye C; Meng MQ
    Comput Med Imaging Graph; 2023 Apr; 105():102199. PubMed ID: 36805709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-class retinal fluid joint segmentation based on cascaded convolutional neural networks.
    Tang W; Ye Y; Chen X; Shi F; Xiang D; Chen Z; Zhu W
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35613604
    [No Abstract]   [Full Text] [Related]  

  • 46. Deep ensemble learning for automated non-advanced AMD classification using optimized retinal layer segmentation and SD-OCT scans.
    Moradi M; Chen Y; Du X; Seddon JM
    Comput Biol Med; 2023 Mar; 154():106512. PubMed ID: 36701964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intra- and Inter-expert Validation of an Automatic Segmentation Method for Fluid Regions Associated with Central Serous Chorioretinopathy in OCT Images.
    Gende M; Castelo L; de Moura J; Novo J; Ortega M
    J Imaging Inform Med; 2024 Feb; 37(1):107-122. PubMed ID: 38343245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust region encoding and layer attribute protection for the segmentation of retina with multifarious abnormalities.
    Zhang Y; Li M; Yuan S; Liu Q; Chen Q
    Med Phys; 2021 Dec; 48(12):7773-7789. PubMed ID: 34716932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of point estimates and average thicknesses of retinal layers measured using manual optical coherence tomography segmentation for quantification of retinal neurodegeneration in multiple sclerosis.
    Sotirchos ES; Seigo MA; Calabresi PA; Saidha S
    Curr Eye Res; 2013 Jan; 38(1):224-8. PubMed ID: 22954302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retina layer segmentation using kernel graph cuts and continuous max-flow.
    Kaba D; Wang Y; Wang C; Liu X; Zhu H; Salazar-Gonzalez AG; Li Y
    Opt Express; 2015 Mar; 23(6):7366-84. PubMed ID: 25837079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic Classification of Macular Diseases from OCT Images Using CNN Guided with Edge Convolutional Layer.
    Esfahani EN; Daneshmand PG; Rabbani H; Plonka G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3858-3861. PubMed ID: 36085830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A segmentation method combining probability map and boundary based on multiple fully convolutional networks and repetitive training.
    Yin W; Hu Y; Yi S; He J
    Phys Med Biol; 2019 Sep; 64(18):185003. PubMed ID: 30808019
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TranSegNet: Hybrid CNN-Vision Transformers Encoder for Retina Segmentation of Optical Coherence Tomography.
    Zhang Y; Li Z; Nan N; Wang X
    Life (Basel); 2023 Apr; 13(4):. PubMed ID: 37109505
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework.
    Melo T; Carneiro Â; Campilho A; Mendonça AM
    J Med Imaging (Bellingham); 2023 Jan; 10(1):014006. PubMed ID: 36825083
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization.
    Xiang D; Tian H; Yang X; Shi F; Zhu W; Chen H; Chen X
    IEEE Trans Image Process; 2018 Dec; 27(12):5880-5891. PubMed ID: 30059302
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images.
    Dodo BI; Li Y; Eltayef K; Liu X
    J Med Syst; 2019 Nov; 43(12):336. PubMed ID: 31724076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated intraretinal segmentation of SD-OCT images in normal and age-related macular degeneration eyes.
    de Sisternes L; Jonna G; Moss J; Marmor MF; Leng T; Rubin DL
    Biomed Opt Express; 2017 Mar; 8(3):1926-1949. PubMed ID: 28663874
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Correction of Retinal Nerve Fiber Layer Thickness Measurement on Spectral-Domain Optical Coherence Tomographic Images Using U-net Architecture.
    Razaghi G; Aghsaei Fard M; Hejazi M
    J Ophthalmic Vis Res; 2023; 18(1):41-50. PubMed ID: 36937200
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Serous Retinal Detachment Causes a Transient Reduction on Spectral Domain OCT Estimates of Ganglion Cell Layer Thickness.
    Nam KY; Kim JY
    Optom Vis Sci; 2019 Mar; 96(3):156-163. PubMed ID: 30741788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.