These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 31453251)

  • 1. An automated quantitative image analysis pipeline of
    Paredes AD; Benavidez D; Cheng J; Mangos S; Donoghue M; Bartholomew A
    J Biol Methods; 2018; 5(4):e101. PubMed ID: 31453251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Fluence on Macrophage Kinetics, Oxidative Stress, and Wound Closure Using Real-Time
    Paredes AD; Benavidez D; Cheng J; Mangos S; Patil R; Donoghue M; Benedetti E; Bartholomew A
    Photobiomodul Photomed Laser Surg; 2019 Jan; 37(1):45-52. PubMed ID: 31050943
    [No Abstract]   [Full Text] [Related]  

  • 3. Cell Tracking Profiler - a user-driven analysis framework for evaluating 4D live-cell imaging data.
    Mitchell C; Caroff L; Solis-Lemus JA; Reyes-Aldasoro CC; Vigilante A; Warburton F; de Chaumont F; Dufour A; Dallongeville S; Olivo-Marin JC; Knight R
    J Cell Sci; 2020 Nov; 133(22):. PubMed ID: 33093241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhagoSight: an open-source MATLAB® package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model.
    Henry KM; Pase L; Ramos-Lopez CF; Lieschke GJ; Renshaw SA; Reyes-Aldasoro CC
    PLoS One; 2013; 8(8):e72636. PubMed ID: 24023630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis.
    Burri O; Wolf B; Seitz A; Gönczy P
    PLoS One; 2017; 12(7):e0179752. PubMed ID: 28746386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PiQSARS: A pipeline for quantitative and statistical analyses of ratiometric fluorescent biosensors.
    Lévy E; Jaffrézic F; Laloë D; Rezaei H; Huang ME; Béringue V; Martin D; Vernis L
    MethodsX; 2020; 7():101034. PubMed ID: 32953466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-automated object tracking methods in biological imaging.
    Davis MA; Pražský O; Sysko LR
    Curr Protoc Cytom; 2015 Jan; 71():12.38.1-12.38.21. PubMed ID: 25559222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments.
    Sachs CC; Grünberger A; Helfrich S; Probst C; Wiechert W; Kohlheyer D; Nöh K
    PLoS One; 2016; 11(9):e0163453. PubMed ID: 27661996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AxonTracer: a novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue.
    Patel A; Li Z; Canete P; Strobl H; Dulin J; Kadoya K; Gibbs D; Poplawski GHD
    BMC Neurosci; 2018 Mar; 19(1):8. PubMed ID: 29523078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated muscle histopathology analysis using CellProfiler.
    Lau YS; Xu L; Gao Y; Han R
    Skelet Muscle; 2018 Oct; 8(1):32. PubMed ID: 30336774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UMATracker: an intuitive image-based tracking platform.
    Yamanaka O; Takeuchi R
    J Exp Biol; 2018 Aug; 221(Pt 16):. PubMed ID: 29954834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model.
    Wang Q; Liu S; Hu D; Wang Z; Wang L; Wu T; Wu Z; Mohan C; Peng A
    Life Sci; 2016 Jul; 157():116-124. PubMed ID: 27288846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays.
    Shah NA; Laws RJ; Wardman B; Zhao LP; Hartman JL
    BMC Syst Biol; 2007 Jan; 1():3. PubMed ID: 17408510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline.
    Huang Y; Datta A; Bikson M; Parra LC
    J Neural Eng; 2019 Jul; 16(5):056006. PubMed ID: 31071686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and Automated Analysis of Single Transcripts at Subcellular Resolution in Zebrafish Embryos.
    Stapel LC; Broaddus C; Vastenhouw NL
    Methods Mol Biol; 2018; 1649():143-162. PubMed ID: 29130195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.
    Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D
    MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MATtrack: A MATLAB-Based Quantitative Image Analysis Platform for Investigating Real-Time Photo-Converted Fluorescent Signals in Live Cells.
    Courtney J; Woods E; Scholz D; Hall WW; Gautier VW
    PLoS One; 2015; 10(10):e0140209. PubMed ID: 26485569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. APPIAN: Automated Pipeline for PET Image Analysis.
    Funck T; Larcher K; Toussaint PJ; Evans AC; Thiel A
    Front Neuroinform; 2018; 12():64. PubMed ID: 30337866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings.
    Blanchoud S; Nicolas D; Zoller B; Tidin O; Naef F
    Methods; 2015 Sep; 85():3-11. PubMed ID: 25934263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.