These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31453342)

  • 41. How Much Entropy Is Contained in NMR Relaxation Parameters?
    Hoffmann F; Mulder FAA; Schäfer LV
    J Phys Chem B; 2022 Jan; 126(1):54-68. PubMed ID: 34936366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decoding the Mobility and Time Scales of Protein Loops.
    Gu Y; Li DW; Brüschweiler R
    J Chem Theory Comput; 2015 Mar; 11(3):1308-14. PubMed ID: 26579776
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combining Molecular and Spin Dynamics Simulations with Solid-State NMR: A Case Study of Amphiphilic Lysine-Leucine Repeat Peptide Aggregates.
    Emani PS; Yimer YY; Davidowski SK; Gebhart RN; Ferreira HE; Kuprov I; Pfaendtner J; Drobny GP
    J Phys Chem B; 2019 Dec; 123(51):10915-10929. PubMed ID: 31769684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Slow internal protein dynamics from water (1)H magnetic relaxation dispersion.
    Sunde EP; Halle B
    J Am Chem Soc; 2009 Dec; 131(51):18214-5. PubMed ID: 19954186
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interpretation of biomolecular NMR spin relaxation parameters.
    Reddy T; Rainey JK
    Biochem Cell Biol; 2010 Apr; 88(2):131-42. PubMed ID: 20453916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling conformational ensembles of slow functional motions in Pin1-WW.
    Morcos F; Chatterjee S; McClendon CL; Brenner PR; López-Rendón R; Zintsmaster J; Ercsey-Ravasz M; Sweet CR; Jacobson MP; Peng JW; Izaguirre JA
    PLoS Comput Biol; 2010 Dec; 6(12):e1001015. PubMed ID: 21152000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanosecond time scale motions in proteins revealed by high-resolution NMR relaxometry.
    Charlier C; Khan SN; Marquardsen T; Pelupessy P; Reiss V; Sakellariou D; Bodenhausen G; Engelke F; Ferrage F
    J Am Chem Soc; 2013 Dec; 135(49):18665-72. PubMed ID: 24228712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microsecond motions probed by near-rotary-resonance R
    Krushelnitsky A; Gauto D; Rodriguez Camargo DC; Schanda P; Saalwächter K
    J Biomol NMR; 2018 May; 71(1):53-67. PubMed ID: 29845494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead.
    Ban D; Gossert AD; Giller K; Becker S; Griesinger C; Lee D
    J Magn Reson; 2012 Aug; 221():1-4. PubMed ID: 22743535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NMR Assessment of Therapeutic Peptides and Proteins: Correlations That Reveal Interactions and Motions.
    Falk BT; Liang Y; Bailly M; Raoufi F; Kekec A; Pissarnitski D; Feng D; Yan L; Lin S; Fayadat-Dilman L; McCoy MA
    Chembiochem; 2020 Feb; 21(3):315-319. PubMed ID: 31283075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solid-State NMR Provides Evidence for Small-Amplitude Slow Domain Motions in a Multispanning Transmembrane α-Helical Protein.
    Good D; Pham C; Jagas J; Lewandowski JR; Ladizhansky V
    J Am Chem Soc; 2017 Jul; 139(27):9246-9258. PubMed ID: 28613900
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intermediate rate atomic trajectories of RNA by solid-state NMR spectroscopy.
    Olsen GL; Bardaro MF; Echodu DC; Drobny GP; Varani G
    J Am Chem Soc; 2010 Jan; 132(1):303-8. PubMed ID: 19994901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface.
    Buchko GW; McAteer K; Wallace SS; Kennedy MA
    DNA Repair (Amst); 2005 Mar; 4(3):327-39. PubMed ID: 15661656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational flexibility of a human immunoglobulin light chain variable domain by relaxation dispersion nuclear magnetic resonance spectroscopy: implications for protein misfolding and amyloid assembly.
    Mukherjee S; Pondaven SP; Jaroniec CP
    Biochemistry; 2011 Jul; 50(26):5845-57. PubMed ID: 21627161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NMR spin relaxation methods for characterization of disorder and folding in proteins.
    Bracken C
    J Mol Graph Model; 2001; 19(1):3-12. PubMed ID: 11381530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intermolecular Interactions and Protein Dynamics by Solid-State NMR Spectroscopy.
    Lamley JM; Öster C; Stevens RA; Lewandowski JR
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15374-8. PubMed ID: 26537742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What Drives
    Kämpf K; Izmailov SA; Rabdano SO; Groves AT; Podkorytov IS; Skrynnikov NR
    Biophys J; 2018 Dec; 115(12):2348-2367. PubMed ID: 30527335
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
    Lundström P; Akke M
    J Biomol NMR; 2005 Jun; 32(2):163-73. PubMed ID: 16034667
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distance estimates from paramagnetic enhancements of nuclear relaxation in linear and flexible model peptides.
    Jacob J; Baker B; Bryant RG; Cafiso DS
    Biophys J; 1999 Aug; 77(2):1086-92. PubMed ID: 10423452
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics.
    Ishima R
    Top Curr Chem; 2012; 326():99-122. PubMed ID: 21898206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.