BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31453408)

  • 1. Follow-up study of subventricular zone progenitors with multiple rounds of cell division during sulcogyrogenesis in the ferret cerebral cortex.
    Sawada K
    IBRO Rep; 2019 Dec; 7():42-51. PubMed ID: 31453408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogenesis of Subventricular Zone Progenitors in the Premature Cortex of Ferrets Facilitated by Neonatal Valproic Acid Exposure.
    Sawada K
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal Exposure to Lipopolysaccharide Promotes Neurogenesis of Subventricular Zone Progenitors in the Developing Neocortex of Ferrets.
    Sawada K; Kamiya S; Kobayashi T
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal valproic acid exposure produces altered gyrification related to increased parvalbumin-immunopositive neuron density with thickened sulcal floors.
    Sawada K; Kamiya S; Aoki I
    PLoS One; 2021; 16(4):e0250262. PubMed ID: 33878144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.
    Martínez-Cerdeño V; Cunningham CL; Camacho J; Antczak JL; Prakash AN; Cziep ME; Walker AI; Noctor SC
    PLoS One; 2012; 7(1):e30178. PubMed ID: 22272298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis.
    Hevner RF; Haydar TF
    Cereb Cortex; 2012 Feb; 22(2):465-8. PubMed ID: 22116731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of cerebellar cortical neurogenesis immediately following valproic acid exposure in ferret kits.
    Kamiya S; Kobayashi T; Sawada K
    Front Neurosci; 2023; 17():1318688. PubMed ID: 38130693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.
    Reillo I; Borrell V
    Cereb Cortex; 2012 Sep; 22(9):2039-54. PubMed ID: 21988826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent.
    García-Moreno F; Vasistha NA; Trevia N; Bourne JA; Molnár Z
    Cereb Cortex; 2012 Feb; 22(2):482-92. PubMed ID: 22114081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging.
    Sawada K; Hikishima K; Murayama AY; Okano HJ; Sasaki E; Okano H
    Neuroscience; 2014 Jan; 257():158-74. PubMed ID: 24220690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Proliferation of Dentate Gyrus Progenitors in the Ferret Hippocampus by Neonatal Exposure to Valproic Acid.
    Sawada K; Kamiya S; Aoki I
    Front Neurosci; 2021; 15():736313. PubMed ID: 34650400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurogenic radial glia in the outer subventricular zone of human neocortex.
    Hansen DV; Lui JH; Parker PR; Kriegstein AR
    Nature; 2010 Mar; 464(7288):554-561. PubMed ID: 20154730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling.
    Fietz SA; Kelava I; Vogt J; Wilsch-Bräuninger M; Stenzel D; Fish JL; Corbeil D; Riehn A; Distler W; Nitsch R; Huttner WB
    Nat Neurosci; 2010 Jun; 13(6):690-9. PubMed ID: 20436478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus.
    Kelava I; Reillo I; Murayama AY; Kalinka AT; Stenzel D; Tomancak P; Matsuzaki F; Lebrand C; Sasaki E; Schwamborn JC; Okano H; Huttner WB; Borrell V
    Cereb Cortex; 2012 Feb; 22(2):469-81. PubMed ID: 22114084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex.
    Poluch S; Juliano SL
    Cereb Cortex; 2015 Feb; 25(2):346-64. PubMed ID: 23968831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse behaviors of outer radial glia in developing ferret and human cortex.
    Gertz CC; Lui JH; LaMonica BE; Wang X; Kriegstein AR
    J Neurosci; 2014 Feb; 34(7):2559-70. PubMed ID: 24523546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.
    Turrero García M; Chang Y; Arai Y; Huttner WB
    J Comp Neurol; 2016 Feb; 524(3):456-70. PubMed ID: 25963823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal profile of neurogenesis in the subventricular zone, dentate gyrus and cerebral cortex following transient focal cerebral ischemia.
    Kuge A; Takemura S; Kokubo Y; Sato S; Goto K; Kayama T
    Neurol Res; 2009 Nov; 31(9):969-76. PubMed ID: 19138475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation.
    Kawasaki H; Toda T; Tanno K
    Biol Open; 2013 Jan; 2(1):95-100. PubMed ID: 23336081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking of Internal Granular Progenitors Responding to Valproic Acid in the Cerebellar Cortex of Infant Ferrets.
    Kamiya S; Kobayashi T; Sawada K
    Cells; 2024 Feb; 13(4):. PubMed ID: 38391920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.