BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31453585)

  • 21. Occurrence of bromate, chlorite and chlorate in drinking waters disinfected with hypochlorite reagents. Tracing their origins.
    Garcia-Villanova RJ; Oliveira Dantas Leite MV; Hernández Hierro JM; de Castro Alfageme S; García Hernández C
    Sci Total Environ; 2010 May; 408(12):2616-20. PubMed ID: 20347118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.
    Sorlini S; Gialdini F; Biasibetti M; Collivignarelli C
    Water Res; 2014 May; 54():44-52. PubMed ID: 24534637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the mechanism of chlorination by chloroperoxidase.
    Dunford HB; Lambeir AM; Kashem MA; Pickard M
    Arch Biochem Biophys; 1987 Jan; 252(1):292-302. PubMed ID: 3028259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with Raman spectroscopy to determine the identity of the potent low-pH oxidant.
    Cherney DP; Duirk SE; Tarr JC; Collette TW
    Appl Spectrosc; 2006 Jul; 60(7):764-72. PubMed ID: 16854264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of activated sludge on the degradation of chlorate in soils under varying environmental conditions.
    Jiang C; Li H; Lin C
    J Hazard Mater; 2009 Mar; 162(2-3):1053-8. PubMed ID: 18621481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypochlorous acid and human blood low density lipoproteins modified by hypochlorous acid increase erythrocyte adhesion to endothelial cells.
    Gorbatenkova EA; Artmann GM; Panasenko OM
    Membr Cell Biol; 2000; 13(4):537-46. PubMed ID: 10926371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The reactivity of myeloperoxidase compound I formed with hypochlorous acid.
    Furtmüller PG; Burner U; Jantschko W; Regelsberger G; Obinger C
    Redox Rep; 2000; 5(4):173-8. PubMed ID: 10994870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic studies on the reaction of cob(II)alamin with hypochlorous acid: Evidence for one electron oxidation of the metal center and corrin ring destruction.
    Dassanayake RS; Farhath MM; Shelley JT; Basu S; Brasch NE
    J Inorg Biochem; 2016 Oct; 163():81-87. PubMed ID: 27567143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper ions and hydrogen peroxide form hypochlorite from NaCl thereby mimicking myeloperoxidase.
    Frenkel K; Blum F; Troll W
    J Cell Biochem; 1986; 30(3):181-93. PubMed ID: 3009503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transformation of organophosphorus pesticides in the presence of aqueous chlorine: kinetics, pathways, and structure-activity relationships.
    Duirk SE; Desetto LM; Davis GM
    Environ Sci Technol; 2009 Apr; 43(7):2335-40. PubMed ID: 19452883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines.
    Thomas EL; Jefferson MM; Grisham MB
    Biochemistry; 1982 Nov; 21(24):6299-308. PubMed ID: 6295461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiation chemistry of physiological saline reinvestigated: evidence that chloride-derived intermediates play a key role in cytotoxicity.
    Saran M; Bors W
    Radiat Res; 1997 Jan; 147(1):70-7. PubMed ID: 8989372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abiotic transformation of chlorpyrifos to chlorpyrifos oxon in chlorinated water.
    Wu J; Laird DA
    Environ Toxicol Chem; 2003 Feb; 22(2):261-4. PubMed ID: 12558155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidations at Sulfur Centers by Aqueous Hypochlorous Acid and Hypochlorite: Cl
    Hu Y; Xie G; Stanbury DM
    Inorg Chem; 2017 Apr; 56(7):4047-4056. PubMed ID: 28290673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and mechanisms of S(IV) reductions of bromite and chlorite ions.
    Huff Hartz KE; Nicoson JS; Wang L; Margerum DW
    Inorg Chem; 2003 Jan; 42(1):78-87. PubMed ID: 12513080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical study of the ammonia-hypochlorous acid reaction mechanism.
    Rayson MS; Altarawneh M; Mackie JC; Kennedy EM; Dlugogorski BZ
    J Phys Chem A; 2010 Feb; 114(7):2597-606. PubMed ID: 20112901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free radicals produced during the oxidation of hydrazines by hypochlorous acid.
    Goodwin DC; Aust SD; Grover TA
    Chem Res Toxicol; 1996 Dec; 9(8):1333-9. PubMed ID: 8951237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of chlorpyrifos in aqueous chlorine solutions: pathways, kinetics, and modeling.
    Duirk SE; Collette TW
    Environ Sci Technol; 2006 Jan; 40(2):546-51. PubMed ID: 16468401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive sulfur species: kinetics and mechanism of the oxidation of cystine by hypochlorous acid to give N,N'-dichlorocystine.
    Nagy P; Ashby MT
    Chem Res Toxicol; 2005 Jun; 18(6):919-23. PubMed ID: 15962926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 8-Chloroadenine: a novel product formed from hypochlorous acid-induced damage to calf thymus DNA.
    Matthew Whiteman Andrew Jenner Barry Halliwell
    Biomarkers; 1999; 4(4):303-10. PubMed ID: 23889180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.