These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
577 related articles for article (PubMed ID: 31453678)
1. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. Singh YP; Bandyopadhyay A; Mandal BB ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678 [TBL] [Abstract][Full Text] [Related]
2. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
3. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
4. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
6. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319 [TBL] [Abstract][Full Text] [Related]
7. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. Lam T; Dehne T; Krüger JP; Hondke S; Endres M; Thomas A; Lauster R; Sittinger M; Kloke L J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2649-2657. PubMed ID: 30860678 [TBL] [Abstract][Full Text] [Related]
8. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Zhang X; Liu Y; Luo C; Zhai C; Li Z; Zhang Y; Yuan T; Dong S; Zhang J; Fan W Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111388. PubMed ID: 33254994 [TBL] [Abstract][Full Text] [Related]
9. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
11. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Kim SH; Yeon YK; Lee JM; Chao JR; Lee YJ; Seo YB; Sultan MT; Lee OJ; Lee JS; Yoon SI; Hong IS; Khang G; Lee SJ; Yoo JJ; Park CH Nat Commun; 2018 Apr; 9(1):1620. PubMed ID: 29693652 [TBL] [Abstract][Full Text] [Related]
12. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
13. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
16. Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage. Majumder N; Roy C; Doenges L; Martin I; Barbero A; Ghosh S ACS Appl Mater Interfaces; 2024 Feb; 16(8):9925-9943. PubMed ID: 38362893 [TBL] [Abstract][Full Text] [Related]
17. Development of a biomimetic arch-like 3D bioprinted construct for cartilage regeneration using gelatin methacryloyl and silk fibroin-gelatin bioinks. Chakraborty J; Fernández-Pérez J; van Kampen KA; Roy S; Ten Brink T; Mota C; Ghosh S; Moroni L Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36947889 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of silk-based bioink during pre and post 3D bioprinting: A review. Gupta S; Alrabaiah H; Christophe M; Rahimi-Gorji M; Nadeem S; Bit A J Biomed Mater Res B Appl Biomater; 2021 Feb; 109(2):279-293. PubMed ID: 32865306 [TBL] [Abstract][Full Text] [Related]
19. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Kesti M; Müller M; Becher J; Schnabelrauch M; D'Este M; Eglin D; Zenobi-Wong M Acta Biomater; 2015 Jan; 11():162-72. PubMed ID: 25260606 [TBL] [Abstract][Full Text] [Related]
20. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]