These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31453820)

  • 1. Influence of Corneal Topographic Parameters in the Decentration of Orthokeratology.
    Gu T; Gong B; Lu D; Lin W; Li N; He Q; Wei R
    Eye Contact Lens; 2019 Nov; 45(6):372-376. PubMed ID: 31453820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Role of Paracentral Corneal Toricity Using Elevation Data for Treatment Zone Decentration During Orthokeratology.
    Li Z; Cui D; Long W; Hu Y; He L; Yang X
    Curr Eye Res; 2018 Sep; 43(9):1083-1089. PubMed ID: 29806506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive role of corneal Q-value differences between nasal-temporal and superior-inferior quadrants in orthokeratology lens decentration.
    Li J; Yang C; Xie W; Zhang G; Li X; Wang S; Yang X; Zeng J
    Medicine (Baltimore); 2017 Jan; 96(2):e5837. PubMed ID: 28079814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Orthokeratology Lens Decentration with Corneal Elevation.
    Chen Z; Xue F; Zhou J; Qu X; Zhou X;
    Optom Vis Sci; 2017 Sep; 94(9):903-907. PubMed ID: 28742623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment Zone Decentration During Orthokeratology on Eyes with Corneal Toricity.
    Maseedupally VK; Gifford P; Lum E; Naidu R; Sidawi D; Wang B; Swarbrick HA
    Optom Vis Sci; 2016 Sep; 93(9):1101-11. PubMed ID: 27254811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel fitting algorithm for alignment curve radius estimation using corneal elevation data in orthokeratology lens trial.
    Zhang L; Zhang Y; Liu Y; Wang K; Zhao M
    Cont Lens Anterior Eye; 2017 Dec; 40(6):401-407. PubMed ID: 28988643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Myopic Orthokeratology on Visual Performance and Optical Quality.
    Liu G; Chen Z; Xue F; Li J; Tian M; Zhou X; Wei R
    Eye Contact Lens; 2018 Sep; 44(5):316-321. PubMed ID: 28346278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographical evaluation of the decentration of orthokeratology lenses.
    Yang X; Zhong X; Gong X; Zeng J
    Yan Ke Xue Bao; 2005 Sep; 21(3):132-5, 195. PubMed ID: 17162848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of entrance pupil centration and coma aberrations on myopic progression following orthokeratology.
    Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R; Suzaki A
    Clin Exp Optom; 2015 Nov; 98(6):534-40. PubMed ID: 26283026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing treatment zone diameter in orthokeratology and its effect on peripheral ocular refraction.
    Gifford P; Tran M; Priestley C; Maseedupally V; Kang P
    Cont Lens Anterior Eye; 2020 Feb; 43(1):54-59. PubMed ID: 31776061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myopia control using toric orthokeratology (TO-SEE study).
    Chen C; Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6510-7. PubMed ID: 24003088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of Trial Fitting and Software Fitting for Orthokeratology Lens: One-Year Follow-Up Study.
    Lu D; Gu T; Lin W; Li N; Gong B; Wei R
    Eye Contact Lens; 2018 Sep; 44(5):339-343. PubMed ID: 30048341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of orthokeratology treatment zone decentration on myopia progression.
    Sun L; Li ZX; Chen Y; He ZQ; Song HX
    BMC Ophthalmol; 2022 Feb; 22(1):76. PubMed ID: 35164702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Association between Fourier Parameters and Clinical Parameters in Myopic Children Undergoing Orthokeratology.
    Wang D; Wen D; Zhang B; Lin W; Liu G; Du B; Lin F; Li X; Wei R
    Curr Eye Res; 2021 Nov; 46(11):1637-1645. PubMed ID: 34096430
    [No Abstract]   [Full Text] [Related]  

  • 15. Altering optical zone diameter, reverse curve width, and compression factor: impacts on visual performance and axial elongation in orthokeratology.
    Wu J; Zhang X; Wang L; Zhang P; Guo X; Xie P
    Cont Lens Anterior Eye; 2024 Jun; 47(3):102136. PubMed ID: 38503665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of orthokeratology in patients with myopic regression after refractive surgery.
    Park YM; Park YK; Lee JE; Lee JS
    Cont Lens Anterior Eye; 2016 Apr; 39(2):167-71. PubMed ID: 26604052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal changes and wavefront analysis after orthokeratology fitting test.
    Stillitano IG; Chalita MR; Schor P; Maidana E; Lui MM; Lipener C; Hofling-Lima AL
    Am J Ophthalmol; 2007 Sep; 144(3):378-86. PubMed ID: 17651677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Results of corneal and total astigmatism estimation by different methods in myopic patients wearing orthokeratology contact lenses].
    Tarutta EP; Aliaeva OO; Verzhanskaia TIu; Milash SV
    Vestn Oftalmol; 2013; 129(4):59-64. PubMed ID: 24137984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of long-term contact lens wear on corneal thickness, curvature, and surface regularity.
    Liu Z; Pflugfelder SC
    Ophthalmology; 2000 Jan; 107(1):105-11. PubMed ID: 10647727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.