These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31453880)

  • 21. Absorption of plutonium compounds in the respiratory tract.
    Davesne E; Paquet F; Ansoborlo E; Blanchardon E
    J Radiol Prot; 2010 Mar; 30(1):5-21. PubMed ID: 20220216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling variability and uncertainty associated with inhaled weapons-grade PuO2.
    Aden J; Scott BR
    Health Phys; 2003 Jun; 84(6):726-36. PubMed ID: 12822582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of initial lung deposit on pulmonary clearance after plutonium oxide inhalation in rat.
    Van der Meeren A; Grillon G; Tourdes F; Rateau S; Le Gall B; Griffiths N
    Radiat Prot Dosimetry; 2007; 127(1-4):50-4. PubMed ID: 17556341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.
    Vasyanovich M; Mostafa MYA; Zhukovsky M
    Radiat Prot Dosimetry; 2017 Nov; 177(1-2):49-52. PubMed ID: 29036634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influences of parameter uncertainties within the ICRP-66 respiratory tract model: a parameter sensitivity analysis.
    Huston TE; Farfán EB; Bolch WE; Bolch WE
    Health Phys; 2003 Nov; 85(5):553-66. PubMed ID: 14571988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DEVELOPMENT OF A NEW DETECTOR SYSTEM TO EVALUATE POSITION AND ACTIVITY OF PLUTONIUM PARTICLES IN NASAL CAVITIES.
    Morishita Y; Yamamoto S; Momose T; Kaneko JH; Nemoto N
    Radiat Prot Dosimetry; 2018 Mar; 178(4):414-421. PubMed ID: 28981916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle Size-dependent Dissolution of Uranium Aerosols in Simulated Lung Fluid: A Case Study in a Nuclear Fuel Fabrication Plant.
    Hansson E; Pettersson HBL; Yusuf I; Roos P; Lindahl P; Eriksson M
    Health Phys; 2022 Jul; 123(1):11-27. PubMed ID: 35522165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size distribution and speciation of chromium in paint spray aerosol at an aerospace facility.
    Sabty-Daily RA; Harris PA; Hinds WC; Froines JR
    Ann Occup Hyg; 2005 Jan; 49(1):47-59. PubMed ID: 15591325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values.
    Oller AR; Oberdörster G
    Regul Toxicol Pharmacol; 2010; 57(2-3):181-94. PubMed ID: 20172011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism and dosimetry of actinide elements in occupationally-exposed personnel of Russia and the United States: a summary progress report.
    Khokhryakov VF; Suslova KG; Filipy RE; Alldredge JR; Aladova EE; Glover SE; Vostrotin VV
    Health Phys; 2000 Jul; 79(1):63-71. PubMed ID: 10855779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the metabolic behaviour of industrial actinide-bearing aerosols after deposition in the rat lung: an experimental basis for interpreting chest monitoring data and assessing limits on intake for workers.
    Stradling GN; Stather JW; Gray SA; Moody JC; Bailey MR; Hodgson A; Collier C
    Hum Toxicol; 1987 Sep; 6(5):365-75. PubMed ID: 3679244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of the internal effective dose of workers independent of inhaled particle size (II).
    Fujita M; Sato Y
    Radiat Prot Dosimetry; 2003; 105(1-4):123-8. PubMed ID: 14526941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank.
    Chazel V; Gerasimo P; Dabouis V; Laroche P; Paquet F
    Radiat Prot Dosimetry; 2003; 105(1-4):163-6. PubMed ID: 14526949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biokinetics and assessment of intake of thorium dioxide.
    Hodgson SA; Stradling GN; Hodgson A; Smith TJ; Youngman MJ; Ansoborlo E
    Radiat Prot Dosimetry; 2003; 105(1-4):115-8. PubMed ID: 14526939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Importance and Quantification of Plutonium Binding in Human Lungs.
    Birchall A; Puncher M; Hodgson A; Tolmachev SY
    Health Phys; 2019 Aug; 117(2):133-142. PubMed ID: 29595754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dependence of dose coefficients for inhaled 239Pu on absorption parameters.
    Suzuki K; Sekimoto H; Ishigure N
    Radiat Prot Dosimetry; 2001; 93(3):267-9. PubMed ID: 11548353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract.
    Bartley DL; Vincent JH
    Ann Occup Hyg; 2011 Aug; 55(7):696-709. PubMed ID: 21746732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microscopic dose to lung from inhaled alpha emitters in humans.
    Diel J; Belosokhov M; Romanov S; Guilmette R
    Radiat Prot Dosimetry; 2007; 127(1-4):23-6. PubMed ID: 17766263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thoron progeny size distribution in monazite storage facility.
    Rogozina M; Zhukovsky M; Ekidin A; Vasyanovich M
    Radiat Prot Dosimetry; 2014 Nov; 162(1-2):10-3. PubMed ID: 25004938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sizing alpha emitting particles of aged plutonium on personal air sampler filters using CR-39 autoradiography.
    Richardson RB; Hegyi G; Starling SC
    Radiat Prot Dosimetry; 2003; 105(1-4):139-42. PubMed ID: 14526944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.