These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31454135)

  • 1. Dynamic Control of Chiral Space Through Local Symmetry Breaking in a Rotaxane Organocatalyst.
    Dommaschk M; Echavarren J; Leigh DA; Marcos V; Singleton TA
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):14955-14958. PubMed ID: 31454135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridyl-Acyl Hydrazone Rotaxanes and Molecular Shuttles.
    Leigh DA; Marcos V; Nalbantoglu T; Vitorica-Yrezabal IJ; Yasar FT; Zhu X
    J Am Chem Soc; 2017 May; 139(20):7104-7109. PubMed ID: 28471662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric benzoin condensation catalyzed by chiral rotaxanes tethering a thiazolium salt moiety via the cooperation of the component: can rotaxane be an effective reaction field?
    Tachibana Y; Kihara N; Takata T
    J Am Chem Soc; 2004 Mar; 126(11):3438-9. PubMed ID: 15025467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A switchable [2]rotaxane asymmetric organocatalyst that utilizes an acyclic chiral secondary amine.
    Blanco V; Leigh DA; Marcos V; Morales-Serna JA; Nussbaumer AL
    J Am Chem Soc; 2014 Apr; 136(13):4905-8. PubMed ID: 24649824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fluorescent and Switchable Rotaxane Dual Organocatalyst.
    Kwan CS; Chan AS; Leung KC
    Org Lett; 2016 Mar; 18(5):976-9. PubMed ID: 26894398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the activation modes of a rotaxane-based switchable organocatalyst.
    Blanco V; Leigh DA; Lewandowska U; Lewandowski B; Marcos V
    J Am Chem Soc; 2014 Nov; 136(44):15775-80. PubMed ID: 25285667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching "on" and "off" the expression of chirality in peptide rotaxanes.
    Asakawa M; Brancato G; Fanti M; Leigh DA; Shimizu T; Slawin AM; Wong JK; Zerbetto F; Zhang S
    J Am Chem Soc; 2002 Mar; 124(12):2939-50. PubMed ID: 11902885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.
    Waelès P; Fournel-Marotte K; Coutrot F
    Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle.
    Lohmann F; Weigandt J; Valero J; Famulok M
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10372-6. PubMed ID: 25078433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of axle-core, macrocycle, and side-station structures on the threading and hydrolysis processes of imine-bridged rotaxanes.
    Sugino H; Kawai H; Umehara T; Fujiwara K; Suzuki T
    Chemistry; 2012 Oct; 18(43):13722-32. PubMed ID: 22996640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines.
    Busseron E; Coutrot F
    J Org Chem; 2013 Apr; 78(8):4099-106. PubMed ID: 23521611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse Anomeric Effect in Large-Amplitude Pyridinium Amide-Containing Mannosyl [2]Rotaxane Molecular Shuttles.
    Riss-Yaw B; Waelès P; Coutrot F
    Chemphyschem; 2016 Jun; 17(12):1860-9. PubMed ID: 27062432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiroptical inversion of a planar chiral redox-switchable rotaxane.
    Gaedke M; Witte F; Anhäuser J; Hupatz H; Schröder HV; Valkonen A; Rissanen K; Lützen A; Paulus B; Schalley CA
    Chem Sci; 2019 Nov; 10(43):10003-10009. PubMed ID: 32055357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A double-stranded DNA rotaxane.
    Ackermann D; Schmidt TL; Hannam JS; Purohit CS; Heckel A; Famulok M
    Nat Nanotechnol; 2010 Jun; 5(6):436-42. PubMed ID: 20400967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diels-Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles.
    Crowley JD; Hänni KD; Leigh DA; Slawin AM
    J Am Chem Soc; 2010 Apr; 132(14):5309-14. PubMed ID: 20334379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting reactions and reactants using a switchable rotaxane organocatalyst with two different active sites.
    Beswick J; Blanco V; De Bo G; Leigh DA; Lewandowska U; Lewandowski B; Mishiro K
    Chem Sci; 2015 Jan; 6(1):140-143. PubMed ID: 28553462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst.
    Eichstaedt K; Jaramillo-Garcia J; Leigh DA; Marcos V; Pisano S; Singleton TA
    J Am Chem Soc; 2017 Jul; 139(27):9376-9381. PubMed ID: 28627882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A [2]Rotaxane-Based Circularly Polarized Luminescence Switch.
    David AHG; Casares R; Cuerva JM; Campaña AG; Blanco V
    J Am Chem Soc; 2019 Nov; 141(45):18064-18074. PubMed ID: 31638802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion-Mediated Photophysical Behavior in a C
    Barendt TA; Rašović I; Lebedeva MA; Farrow GA; Auty A; Chekulaev D; Sazanovich IV; Weinstein JA; Porfyrakis K; Beer PD
    J Am Chem Soc; 2018 Feb; 140(5):1924-1936. PubMed ID: 29337535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield diastereoselective synthesis of planar chiral [2]- and [3]rotaxanes constructed from per-ethylated pillar[5]arene and pyridinium derivatives.
    Ogoshi T; Yamafuji D; Aoki T; Kitajima K; Yamagishi TA; Hayashi Y; Kawauchi S
    Chemistry; 2012 Jun; 18(24):7493-500. PubMed ID: 22544474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.