These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31454353)

  • 21. A tutorial on uncertainty propagation techniques for predictive microbiology models: A critical analysis of state-of-the-art techniques.
    Akkermans S; Nimmegeers P; Van Impe JF
    Int J Food Microbiol; 2018 Oct; 282():1-8. PubMed ID: 29885972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment.
    Koyama K; Hokunan H; Hasegawa M; Kawamura S; Koseki S
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parameter estimation in distributed models of blood-tissue exchange: a Monte Carlo strategy to assess precision.
    Vicini P; Cobelli C
    Ann Biomed Eng; 1997; 25(5):815-21. PubMed ID: 9300105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation kinetics of Listeria monocytogenes by high-pressure processing: pressure and temperature variation.
    Doona CJ; Feeherry FE; Ross EW; Kustin K
    J Food Sci; 2012 Aug; 77(8):M458-65. PubMed ID: 22748039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of Fisher information matrix approximation methods in population optimal design calculations.
    Strömberg EA; Nyberg J; Hooker AC
    J Pharmacokinet Pharmacodyn; 2016 Dec; 43(6):609-619. PubMed ID: 27804003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal experimental design with the sigma point method.
    Schenkendorf R; Kremling A; Mangold M
    IET Syst Biol; 2009 Jan; 3(1):10-23. PubMed ID: 19154081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single cell variability of L. monocytogenes grown on liver pâté and cooked ham at 7 degrees C: comparing challenge test data to predictive simulations.
    Francois K; Devlieghere F; Uyttendaele M; Standaert AR; Geeraerd AH; Nadal P; Van Impe JF; Debevere J
    J Appl Microbiol; 2006 Apr; 100(4):800-12. PubMed ID: 16553736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative risk assessment for Listeria monocytogenes in smoked or gravad salmon and rainbow trout in Sweden.
    Lindqvist R; Westöö A
    Int J Food Microbiol; 2000 Jul; 58(3):181-96. PubMed ID: 10939268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stochastically modeling Listeria monocytogenes growth in farm tank milk.
    Albert I; Pouillot R; Denis JB
    Risk Anal; 2005 Oct; 25(5):1171-85. PubMed ID: 16297223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of ED, EID, and API criteria for the robust optimization of sampling times in pharmacokinetics.
    Tod M; Rocchisani JM
    J Pharmacokinet Biopharm; 1997 Aug; 25(4):515-37. PubMed ID: 9561492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying variability on thermal resistance of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Jan; 193():130-8. PubMed ID: 25462932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A geometrical model for the Monte Carlo simulation of the TrueBeam linac.
    Rodriguez M; Sempau J; Fogliata A; Cozzi L; Sauerwein W; Brualla L
    Phys Med Biol; 2015 Jun; 60(11):N219-29. PubMed ID: 25984796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal characterization of thermal microbial inactivation simulating non-isothermal processes.
    Garre A; González-Tejedor G; Peñalver-Soto JL; Fernández PS; Egea JA
    Food Res Int; 2018 May; 107():267-274. PubMed ID: 29580484
    [No Abstract]   [Full Text] [Related]  

  • 34. On the design of optimal dynamic experiments for parameter estimation of a Ratkowsky-type growth kinetics at suboptimal temperatures.
    Bernaerts K; Versyck KJ; Van Impe JF
    Int J Food Microbiol; 2000 Mar; 54(1-2):27-38. PubMed ID: 10746572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of Bayesian modelling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon.
    Delignette-Muller ML; Cornu M; Pouillot R; Denis JB
    Int J Food Microbiol; 2006 Feb; 106(2):195-208. PubMed ID: 16216374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Errors associated with metabolic control analysis. Application Of Monte-Carlo simulation of experimental data.
    Ainscow EK; Brand MD
    J Theor Biol; 1998 Sep; 194(2):223-33. PubMed ID: 9778435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of dummy data points when fitting bacterial growth curves.
    Kelly LA; Gibson G; Gettinby G; Donachie W; Low JC
    IMA J Math Appl Med Biol; 1999 Jun; 16(2):155-70. PubMed ID: 10399311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uncertainty in thermal process calculations due to variability in first-order and Weibull kinetic parameters.
    Halder A; Datta AK; Geedipalli SS
    J Food Sci; 2007 May; 72(4):E155-67. PubMed ID: 17995767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling of growth, growth/no-growth interface and nonthermal inactivation areas of Listeria in foods.
    Coroller L; Kan-King-Yu D; Leguerinel I; Mafart P; Membré JM
    Int J Food Microbiol; 2012 Jan; 152(3):139-52. PubMed ID: 22036076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Most Probable Curve method - A robust approach to estimate kinetic models from low plate count data resulting in reduced uncertainty.
    Garre A; Zwietering MH; van Boekel MAJS
    Int J Food Microbiol; 2022 Nov; 380():109871. PubMed ID: 35985079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.