These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31454359)
1. Pelvis and femur shape prediction using principal component analysis for body model on seat comfort assessment. Impact on the prediction of the used palpable anatomical landmarks as predictors. Savonnet L; Duprey S; Van Sint Jan S; Wang X PLoS One; 2019; 14(8):e0221201. PubMed ID: 31454359 [TBL] [Abstract][Full Text] [Related]
2. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575 [TBL] [Abstract][Full Text] [Related]
3. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive evaluation of PCA-based finite element modelling of the human femur. Grassi L; Schileo E; Boichon C; Viceconti M; Taddei F Med Eng Phys; 2014 Oct; 36(10):1246-52. PubMed ID: 25128959 [TBL] [Abstract][Full Text] [Related]
5. Methods for determining hip and lumbosacral joint centers in a seated position from external anatomical landmarks. Peng J; Panda J; Van Sint Jan S; Wang X J Biomech; 2015 Jan; 48(2):396-400. PubMed ID: 25497377 [TBL] [Abstract][Full Text] [Related]
6. [Development and validating of a three-dimensional finite element model of total human pelvis]. Cheng LM; Jia YW; Yu GR; Du CF; Yu Y; Lou YJ; Ding ZQ Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(47):3346-8. PubMed ID: 18478949 [TBL] [Abstract][Full Text] [Related]
7. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body. Majumder S; Roychowdhury A; Pal S Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483 [TBL] [Abstract][Full Text] [Related]
8. Development of predictive statistical shape models for paediatric lower limb bones. Shi B; Barzan M; Nasseri A; Carty CP; Lloyd DG; Davico G; Maharaj JN; Diamond LE; Saxby DJ Comput Methods Programs Biomed; 2022 Oct; 225():107002. PubMed ID: 35882107 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the 3-D shape and mechanics of the proximal femur using a shape template and a bone mineral density image. Väänänen SP; Isaksson H; Julkunen P; Sirola J; Kröger H; Jurvelin JS Biomech Model Mechanobiol; 2011 Jul; 10(4):529-38. PubMed ID: 20809392 [TBL] [Abstract][Full Text] [Related]
10. Prediction of strength and strain of the proximal femur by a CT-based finite element method. Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798 [TBL] [Abstract][Full Text] [Related]
11. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Barratt DC; Chan CS; Edwards PJ; Penney GP; Slomczykowski M; Carter TJ; Hawkes DJ Med Image Anal; 2008 Jun; 12(3):358-74. PubMed ID: 18313973 [TBL] [Abstract][Full Text] [Related]
12. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing. Huang H; Xiang C; Zeng C; Ouyang H; Wong KK; Huang W Australas Phys Eng Sci Med; 2015 Dec; 38(4):743-53. PubMed ID: 26577713 [TBL] [Abstract][Full Text] [Related]
14. [The finite element modeling of human pelvis and its application in medicolegal expertise]. Li ZD; Zou DH; Liu NG; Huang P; Chen YJ Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599 [TBL] [Abstract][Full Text] [Related]
15. Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex. Majumder S; Roychowdhury A; Pal S J Biomech; 2009 Jul; 42(10):1475-1482. PubMed ID: 19560148 [TBL] [Abstract][Full Text] [Related]
16. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Grassi L; Väänänen SP; Ristinmaa M; Jurvelin JS; Isaksson H Biomech Model Mechanobiol; 2017 Jun; 16(3):989-1000. PubMed ID: 28004226 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610 [TBL] [Abstract][Full Text] [Related]
18. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model. Hao Z; Wan C; Gao X; Ji T J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331 [TBL] [Abstract][Full Text] [Related]
19. Estimation of spinal joint centers from external back profile and anatomical landmarks. Nerot A; Skalli W; Wang X J Biomech; 2018 Mar; 70():96-101. PubMed ID: 29223495 [TBL] [Abstract][Full Text] [Related]
20. A three-dimensional finite element analysis of the human hip. Akrami M; Craig K; Dibaj M; Javadi AA; Benattayallah A J Med Eng Technol; 2018 Oct; 42(7):546-552. PubMed ID: 30875263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]