BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31454438)

  • 21. Intra-"cortical" activity during avian non-REM and REM sleep: variant and invariant traits between birds and mammals.
    van der Meij J; Martinez-Gonzalez D; Beckers GJL; Rattenborg NC
    Sleep; 2019 Feb; 42(2):. PubMed ID: 30462347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid eye movement sleep deprivation: a central-neural change during wakefulness.
    Dewson JH; Dement WC; Wagener TE; Nobel K
    Science; 1967 Apr; 156(3773):403-6. PubMed ID: 4304356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communication Through Coherence by Means of Cross-frequency Coupling.
    González J; Cavelli M; Mondino A; Rubido N; Bl Tort A; Torterolo P
    Neuroscience; 2020 Nov; 449():157-164. PubMed ID: 32926953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential modulation of parietal cortex activity by respiration and θ oscillations.
    Jung F; Witte V; Yanovsky Y; Klumpp M; Brankačk J; Tort ABL; Draguhn A
    J Neurophysiol; 2022 Mar; 127(3):801-817. PubMed ID: 35171722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.
    Le Van Quyen M; Muller LE; Telenczuk B; Halgren E; Cash S; Hatsopoulos NG; Dehghani N; Destexhe A
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9363-8. PubMed ID: 27482084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2001 Oct; 86(4):1884-98. PubMed ID: 11600648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Central respiratory activity in rapid eye movement sleep: augmenting and late inspiratory cells [corrected].
    Orem J
    Sleep; 1994 Dec; 17(8):665-73. PubMed ID: 7701177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of neuronal OFF periods as low amplitude neural activity segments.
    Harding CD; Guillaumin MCC; Krone LB; Kahn MC; Blanco-Duque C; Mikutta C; Vyazovskiy VV
    BMC Neurosci; 2023 Feb; 24(1):13. PubMed ID: 36809980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation.
    Steriade M; Amzica F; Contreras D
    J Neurosci; 1996 Jan; 16(1):392-417. PubMed ID: 8613806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.
    Zelano C; Jiang H; Zhou G; Arora N; Schuele S; Rosenow J; Gottfried JA
    J Neurosci; 2016 Dec; 36(49):12448-12467. PubMed ID: 27927961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans.
    Gross DW; Gotman J
    Neuroscience; 1999; 94(4):1005-18. PubMed ID: 10625043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous activity of the perirhinal cortex in behaving cats.
    Collins DR; Lang EJ; Paré D
    Neuroscience; 1999; 89(4):1025-39. PubMed ID: 10362292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Infra-slow fluctuations in cortical potentials and respiration drive fast cortical EEG rhythms in sleeping and waking states.
    Väyrynen T; Helakari H; Korhonen V; Tuunanen J; Huotari N; Piispala J; Kallio M; Raitamaa L; Kananen J; Järvelä M; Matias Palva J; Kiviniemi V
    Clin Neurophysiol; 2023 Dec; 156():207-219. PubMed ID: 37972532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic modulation of theta-gamma coupling during rapid eye movement sleep.
    Bandarabadi M; Boyce R; Gutierrez Herrera C; Bassetti CL; Williams S; Schindler K; Adamantidis A
    Sleep; 2019 Dec; 42(12):. PubMed ID: 31410477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct features of fast oscillations in phasic and tonic rapid eye movement sleep.
    Brankačk J; Scheffzük C; Kukushka VI; Vyssotski AL; Tort AB; Draguhn A
    J Sleep Res; 2012 Dec; 21(6):630-3. PubMed ID: 22812730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans.
    Dubois M; Chenivesse C; Raux M; Morales-Robles A; Nierat MC; Garcia G; Navarro-Sune X; Chavez M; Martinerie J; Similowski T
    J Neurosci; 2016 Oct; 36(41):10673-10682. PubMed ID: 27733617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human Rapid Eye Movement Sleep Shows Local Increases in Low-Frequency Oscillations and Global Decreases in High-Frequency Oscillations Compared to Resting Wakefulness.
    Baird B; Castelnovo A; Riedner BA; Lutz A; Ferrarelli F; Boly M; Davidson RJ; Tononi G
    eNeuro; 2018; 5(4):. PubMed ID: 30225358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep.
    Cantero JL; Atienza M; Salas RM; Dominguez-Marin E
    J Neurosci; 2002 Jun; 22(11):4702-8. PubMed ID: 12040077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.