These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 3145446)

  • 1. Reinforcement pathways for cocaine.
    Koob GF; Hubner CB
    NIDA Res Monogr; 1988; 88():137-59. PubMed ID: 3145446
    [No Abstract]   [Full Text] [Related]  

  • 2. Pharmacological effects of cocaine relevant to its abuse.
    Balster RL
    NIDA Res Monogr; 1988; 88():1-13. PubMed ID: 3145443
    [No Abstract]   [Full Text] [Related]  

  • 3. Pharmacological modifications of cocaine and opioid self-administration.
    Winger G
    NIDA Res Monogr; 1988; 88():125-36. PubMed ID: 2850500
    [No Abstract]   [Full Text] [Related]  

  • 4. RTI-113 administration reduces cocaine self-administration at high occupancy of dopamine transporter.
    Dworkin SI; Lambert P; Sizemore GM; Carroll FI; Kuhar MJ
    Synapse; 1998 Sep; 30(1):49-55. PubMed ID: 9704880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking.
    Berglind WJ; Case JM; Parker MP; Fuchs RA; See RE
    Neuroscience; 2006; 137(2):699-706. PubMed ID: 16289883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased gabaergic input to ventral tegmental area dopaminergic neurons associated with decreased cocaine reinforcement in mu-opioid receptor knockout mice.
    Mathon DS; Lesscher HM; Gerrits MA; Kamal A; Pintar JE; Schuller AG; Spruijt BM; Burbach JP; Smidt MP; van Ree JM; Ramakers GM
    Neuroscience; 2005; 130(2):359-67. PubMed ID: 15664692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of D1- and D2-like compounds on cocaine self-administration in Lewis and Fischer 344 inbred rats.
    Haile CN; Kosten TA
    J Pharmacol Exp Ther; 2001 Nov; 299(2):509-18. PubMed ID: 11602661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine.
    Caine SB; Negus SS; Mello NK; Bergman J
    J Pharmacol Exp Ther; 1999 Oct; 291(1):353-60. PubMed ID: 10490924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food deprivation produces persistent increases in self-administration behavior during cocaine extinction.
    Carroll ME
    NIDA Res Monogr; 1984; 55():125-31. PubMed ID: 6443370
    [No Abstract]   [Full Text] [Related]  

  • 10. Neurobehavioral pharmacology of cocaine.
    Dworkin SI; Smith JE
    NIDA Res Monogr; 1988; 88():185-98. PubMed ID: 3145449
    [No Abstract]   [Full Text] [Related]  

  • 11. Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system.
    Stefański R; Ziółkowska B; Kuśmider M; Mierzejewski P; Wyszogrodzka E; Kołomańska P; Dziedzicka-Wasylewska M; Przewłocki R; Kostowski W
    Brain Res; 2007 Jul; 1157():1-10. PubMed ID: 17544385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dopamine D-1 and D-2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat.
    Caine SB; Koob GF
    J Pharmacol Exp Ther; 1994 Jul; 270(1):209-18. PubMed ID: 8035317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 2beta-propanoyl-3beta-(4-tolyl)-tropane (PTT) on the self-administration of cocaine, heroin, and cocaine/heroin combinations in rats.
    Sizemore GM; Davies HM; Martin TJ; Smith JE
    Drug Alcohol Depend; 2004 Mar; 73(3):259-65. PubMed ID: 15036548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats.
    Hemby SE; Co C; Dworkin SI; Smith JE
    J Pharmacol Exp Ther; 1999 Jan; 288(1):274-80. PubMed ID: 9862781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement.
    Choi KH; Whisler K; Graham DL; Self DW
    Neuroscience; 2006; 137(2):373-83. PubMed ID: 16359811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor activity and cocaine-seeking behavior during acquisition and reinstatement of operant self-administration behavior in rats.
    Koeltzow TE; Vezina P
    Behav Brain Res; 2005 May; 160(2):250-9. PubMed ID: 15863221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioral momentum of cocaine self-administration: effects of frequency of reinforcement on resistance to extinction.
    Quick SL; Shahan TA
    Behav Pharmacol; 2009 Jul; 20(4):337-45. PubMed ID: 19571742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological and behavioral treatment of cocaine addiction: animal models.
    Carroll ME
    NIDA Res Monogr; 1994; 145():113-30. PubMed ID: 8742810
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulation of heroin and cocaine self-administration by dopamine D1- and D2-like receptor agonists in rhesus monkeys.
    Rowlett JK; Platt DM; Yao WD; Spealman RD
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1135-43. PubMed ID: 17351103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role for the mesocortical dopamine system in the motivating effects of cocaine.
    Koob GF; Caine B; Markou A; Pulvirenti L; Weiss F
    NIDA Res Monogr; 1994; 145():1-18. PubMed ID: 8742805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.