BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 31454558)

  • 1. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans.
    Prasath KG; Sethupathy S; Pandian SK
    J Proteomics; 2019 Sep; 208():103503. PubMed ID: 31454558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-inflammatory potential of myristic acid and palmitic acid synergism against systemic candidiasis in Danio rerio (Zebrafish).
    Prasath KG; Alexpandi R; Parasuraman R; Pavithra M; Ravi AV; Pandian SK
    Biomed Pharmacother; 2021 Jan; 133():111043. PubMed ID: 33378951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans.
    Subramenium GA; Swetha TK; Iyer PM; Balamurugan K; Pandian SK
    Microbiol Res; 2018 Mar; 207():19-32. PubMed ID: 29458854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of
    Romo JA; Pierce CG; Chaturvedi AK; Lazzell AL; McHardy SF; Saville SP; Lopez-Ribot JL
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208749
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of Biofilm Formation by
    Lee JH; Kim YG; Khadke SK; Yamano A; Watanabe A; Lee J
    ACS Infect Dis; 2019 Jul; 5(7):1177-1187. PubMed ID: 31055910
    [No Abstract]   [Full Text] [Related]  

  • 6. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation.
    Muthamil S; Prasath KG; Priya A; Precilla P; Pandian SK
    Sci Rep; 2020 Mar; 10(1):5113. PubMed ID: 32198447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold atmospheric plasma inhibits the growth of Candida albicans by affecting ergosterol biosynthesis and suppresses the fungal virulence factors in vitro.
    Rahimi-Verki N; Shapoorzadeh A; Razzaghi-Abyaneh M; Atyabi SM; Shams-Ghahfarokhi M; Jahanshiri Z; Gholami-Shabani M
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():66-72. PubMed ID: 26739496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers.
    Lee JH; Kim YG; Lee J
    Lett Appl Microbiol; 2018 Aug; 67(2):123-129. PubMed ID: 29885256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives.
    Shafreen RM; Muthamil S; Pandian SK
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6775-85. PubMed ID: 24723295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation.
    Manoharan RK; Lee JH; Lee J
    Microb Biotechnol; 2018 Nov; 11(6):1060-1069. PubMed ID: 29656577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zerumbone inhibits
    Shin DS; Eom YB
    Can J Microbiol; 2019 Oct; 65(10):713-721. PubMed ID: 31158320
    [No Abstract]   [Full Text] [Related]  

  • 12. Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans.
    Mukhopadhyay K; Prasad T; Saini P; Pucadyil TJ; Chattopadhyay A; Prasad R
    Antimicrob Agents Chemother; 2004 May; 48(5):1778-87. PubMed ID: 15105135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by
    Manoharan RK; Lee JH; Kim YG; Lee J
    Front Cell Infect Microbiol; 2017; 7():447. PubMed ID: 29085811
    [No Abstract]   [Full Text] [Related]  

  • 14. Erg6 Acts as a Downstream Effector of the Transcription Factor Flo8 To Regulate Biofilm Formation in Candida albicans.
    Jin X; Luan X; Xie F; Chang W; Lou H
    Microbiol Spectr; 2023 Jun; 11(3):e0039323. PubMed ID: 37098889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans.
    Hans S; Fatima Z; Hameed S
    J Glob Antimicrob Resist; 2019 Jun; 17():263-275. PubMed ID: 30659981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans.
    Wu Y; Wu M; Wang Y; Chen Y; Gao J; Ying C
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29931064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibiofilm and Antivirulence Activities of 6-Gingerol and 6-Shogaol Against
    Lee JH; Kim YG; Choi P; Ham J; Park JG; Lee J
    Front Cell Infect Microbiol; 2018; 8():299. PubMed ID: 30211127
    [No Abstract]   [Full Text] [Related]  

  • 18. Candida albicans
    Rollenhagen C; Agyeman H; Eszterhas S; Lee SA
    mSphere; 2021 Oct; 6(5):e0070721. PubMed ID: 34585966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of new drugs inhibitors of Candida albicans hyphae and biofilm formation by upregulating the expression of TUP1 transcription repressor gene.
    Hamdy R; Soliman SSM; Alsaadi AI; Fayed B; Hamoda AM; Elseginy SA; Husseiny MI; Ibrahim AS
    Eur J Pharm Sci; 2020 May; 148():105327. PubMed ID: 32272212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes.
    Kim YG; Lee JH; Park S; Khadke SK; Shim JJ; Lee J
    Microbiol Spectr; 2022 Oct; 10(5):e0253622. PubMed ID: 36190417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.