These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31454583)

  • 21. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions.
    Xu L; Luo M; Li W; Wei X; Xie K; Liu L; Jiang C; Liu H
    J Hazard Mater; 2011 Jan; 185(2-3):1169-76. PubMed ID: 21041020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456.
    Shen H; Wang YT
    Appl Environ Microbiol; 1993 Nov; 59(11):3771-7. PubMed ID: 8285683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The long-term effects of hexavalent chromium on anaerobic ammonium oxidation process: Performance inhibition, hexavalent chromium reduction and unexpected nitrite oxidation.
    Yu C; Tang X; Li LS; Chai XL; Xiao R; Wu D; Tang CJ; Chai LY
    Bioresour Technol; 2019 Jul; 283():138-147. PubMed ID: 30903820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.
    Mauricio Gutiérrez A; Peña Cabriales JJ; Maldonado Vega M
    Int J Phytoremediation; 2010; 12(4):317-34. PubMed ID: 20734910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two combined mechanisms responsible to hexavalent chromium removal on active anaerobic granular consortium.
    Durán U; Coronado-Apodaca KG; Meza-Escalante ER; Ulloa-Mercado G; Serrano D
    Chemosphere; 2018 May; 198():191-197. PubMed ID: 29421729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hexavalent chromium reduction by gallic acid.
    Mystrioti C; Koursari S; Xenidis A; Papassiopi N
    Chemosphere; 2021 Jun; 273():129737. PubMed ID: 33524764
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill.
    He Z; Gao F; Sha T; Hu Y; He C
    J Hazard Mater; 2009 Apr; 163(2-3):869-73. PubMed ID: 18722054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.
    VanEngelen MR; Peyton BM; Mormile MR; Pinkart HC
    Biodegradation; 2008 Nov; 19(6):841-50. PubMed ID: 18401687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioremediation of Cr(VI) in contaminated soils.
    Krishna KR; Philip L
    J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid.
    Zhang J; Yin H; Chen L; Liu F; Chen H
    Environ Pollut; 2018 Jun; 237():740-746. PubMed ID: 29126567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.
    Piñón-Castillo HA; Brito EM; Goñi-Urriza M; Guyoneaud R; Duran R; Nevarez-Moorillon GV; Gutiérrez-Corona JF; Caretta CA; Reyna-López GE
    J Appl Microbiol; 2010 Dec; 109(6):2173-82. PubMed ID: 20854455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds.
    Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA
    Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous Cr(VI) bio-reduction and methane production by anaerobic granular sludge.
    Hu Q; Sun J; Sun D; Tian L; Ji Y; Qiu B
    Bioresour Technol; 2018 Aug; 262():15-21. PubMed ID: 29689436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromium-microorganism interactions in soils: remediation implications.
    Kamaludeen SP; Megharaj M; Juhasz AL; Sethunathan N; Naidu R
    Rev Environ Contam Toxicol; 2003; 178():93-164. PubMed ID: 12868782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hexavalent chromium reduction by bacteria from tannery effluent.
    Batool R; Yrjala K; Hasnain S
    J Microbiol Biotechnol; 2012 Apr; 22(4):547-54. PubMed ID: 22534304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor.
    Lu YZ; Fu L; Ding J; Ding ZW; Li N; Zeng RJ
    Water Res; 2016 Oct; 102():445-452. PubMed ID: 27395029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site.
    McLean JS; Beveridge TJ; Phipps D
    Environ Microbiol; 2000 Dec; 2(6):611-9. PubMed ID: 11214794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa).
    Molokwane PE; Meli KC; Nkhalambayausi-Chirwa EM
    Water Res; 2008 Nov; 42(17):4538-48. PubMed ID: 18760438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.