These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31454609)

  • 1. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest.
    Tan K; Wang H; Chen L; Du Q; Du P; Pan C
    J Hazard Mater; 2020 Jan; 382():120987. PubMed ID: 31454609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random forest-based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data.
    Tan K; Ma W; Wu F; Du Q
    Environ Monit Assess; 2019 Jun; 191(7):446. PubMed ID: 31214787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data.
    Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S
    Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning.
    Tan K; Ma W; Chen L; Wang H; Du Q; Du P; Yan B; Liu R; Li H
    J Hazard Mater; 2021 Jan; 401():123288. PubMed ID: 32645545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the distribution patterns of heavy metal in soil from airborne hyperspectral imagery based on spectral absorption characteristics.
    Tan K; Chen L; Wang H; Liu Z; Ding J; Wang X
    J Environ Manage; 2023 Dec; 347():119196. PubMed ID: 37801949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism.
    Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J
    Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China.
    Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T
    Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy Metal Concentration Estimation for Different Farmland Soils Based on Projection Pursuit and LightGBM with Hyperspectral Images.
    Lin N; Shao X; Wu H; Jiang R; Wu M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest.
    Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y
    Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas.
    Hou L; Li X; Li F
    J Environ Qual; 2019 Jan; 48(1):57-63. PubMed ID: 30640357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: A case study of Yushu County, Qinghai, China.].
    Yang LY; Gao XH; Zhang W; Shi FF; He LH; Jia W
    Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1775-1784. PubMed ID: 29737683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Inversion of Soil Heavy Metal Cr Content in Agricultural Land Using Zhuhai-1 Hyperspectral Images.
    Guo H; Yang K; Wu F; Chen Y; Shen J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method.
    Zou Z; Wang Q; Wu Q; Li M; Zhen J; Yuan D; Zhou M; Xu C; Wang Y; Zhao Y; Yin S; Xu L
    J Environ Manage; 2024 Mar; 355():120503. PubMed ID: 38457894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field hyperspectral data and OLI8 multispectral imagery for heavy metal content prediction and mapping around an abandoned Pb-Zn mining site in northern Tunisia.
    Mezned N; Alayet F; Dkhala B; Abdeljaouad S
    Heliyon; 2022 Jun; 8(6):e09712. PubMed ID: 35756131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area.
    Shen Q; Xia K; Zhang S; Kong C; Hu Q; Yang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117191. PubMed ID: 31247388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimate of soil heavy metal in a mining region using PCC-SVM-RFECV-AdaBoost combined with reflectance spectroscopy.
    Wang Y; Niu R; Lin G; Xiao Y; Ma H; Zhao L
    Environ Geochem Health; 2023 Dec; 45(12):9103-9121. PubMed ID: 36869963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Distribution Prediction of Soil Heavy Metals Based on Remote Sensing Temporal-Spatial-Spectral Features and Random Forest Model].
    Wang ZQ; Zhang DY; Xu XB; Wang ZP; Yang DY; Song XN
    Huan Jing Ke Xue; 2024 Mar; 45(3):1713-1723. PubMed ID: 38471883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pollution level mapping of heavy metal in soil for ground-airborne hyperspectral data with support vector machine and deep neural network: A case study of Southwestern Xiong'an, China.
    Wang M; Wang C; Ruan J; Liu W; Huang Z; Chen M; Ni B
    Environ Pollut; 2023 Mar; 321():121132. PubMed ID: 36736814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.