These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31454707)

  • 21. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.
    Jiang Y; Yu D
    Plant Physiol; 2016 Aug; 171(4):2771-82. PubMed ID: 27268959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine.
    Vercammen D; van de Cotte B; De Jaeger G; Eeckhout D; Casteels P; Vandepoele K; Vandenberghe I; Van Beeumen J; Inzé D; Van Breusegem F
    J Biol Chem; 2004 Oct; 279(44):45329-36. PubMed ID: 15326173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2.
    Gravino M; Locci F; Tundo S; Cervone F; Savatin DV; De Lorenzo G
    Mol Plant Pathol; 2017 May; 18(4):582-595. PubMed ID: 27118426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation.
    Demkura PV; Ballaré CL
    Mol Plant; 2012 May; 5(3):642-52. PubMed ID: 22447155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleoporin NUP88/MOS7 is required for manifestation of phenotypes associated with the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 mutant cerk1-4.
    Genenncher B; Lipka V; Petutschnig EK; Wiermer M
    Plant Signal Behav; 2017 May; 12(5):e1313378. PubMed ID: 28387602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea.
    Sham A; Moustafa K; Al-Shamisi S; Alyan S; Iratni R; AbuQamar S
    PLoS One; 2017; 12(2):e0172343. PubMed ID: 28207847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant metacaspase activation and activity.
    Minina EA; Stael S; Van Breusegem F; Bozhkov PV
    Methods Mol Biol; 2014; 1133():237-53. PubMed ID: 24567106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide.
    Xue M; Yi H
    Ecotoxicol Environ Saf; 2018 Jan; 147():523-529. PubMed ID: 28917191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
    AbuQamar S; Chen X; Dhawan R; Bluhm B; Salmeron J; Lam S; Dietrich RA; Mengiste T
    Plant J; 2006 Oct; 48(1):28-44. PubMed ID: 16925600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metacaspases versus caspases in development and cell fate regulation.
    Minina EA; Coll NS; Tuominen H; Bozhkov PV
    Cell Death Differ; 2017 Aug; 24(8):1314-1325. PubMed ID: 28234356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
    Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM
    Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Function of miR825 and miR825* as Negative Regulators in
    Nie P; Chen C; Yin Q; Jiang C; Guo J; Zhao H; Niu D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Wang C; Ding Y; Yao J; Zhang Y; Sun Y; Colee J; Mou Z
    Plant J; 2015 Sep; 83(6):1019-33. PubMed ID: 26216741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis.
    Fellbrich G; Romanski A; Varet A; Blume B; Brunner F; Engelhardt S; Felix G; Kemmerling B; Krzymowska M; Nürnberger T
    Plant J; 2002 Nov; 32(3):375-90. PubMed ID: 12410815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Danger-associate peptide regulates root immunity in Arabidopsis.
    Jing Y; Zou X; Sun C; Qin X; Zheng X
    Biochem Biophys Res Commun; 2023 Jun; 663():163-170. PubMed ID: 37121126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000.
    Wang M; Zhu Y; Han R; Yin W; Guo C; Li Z; Wang X
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense.
    Tripathi D; Zhang T; Koo AJ; Stacey G; Tanaka K
    Plant Physiol; 2018 Jan; 176(1):511-523. PubMed ID: 29180381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis.
    Mengiste T; Chen X; Salmeron J; Dietrich R
    Plant Cell; 2003 Nov; 15(11):2551-65. PubMed ID: 14555693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STRESS INDUCED FACTOR 2, a Leucine-Rich Repeat Kinase Regulates Basal Plant Pathogen Defense.
    Yuan N; Yuan S; Li Z; Zhou M; Wu P; Hu Q; Mendu V; Wang L; Luo H
    Plant Physiol; 2018 Apr; 176(4):3062-3080. PubMed ID: 29463771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms.
    Raacke IC; von Rad U; Mueller MJ; Berger S
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1138-46. PubMed ID: 17022178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.