These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31454919)

  • 1. Cost-Effective High-Performance Concrete: Experimental Analysis on Shrinkage.
    Kucharczyková B; Kocáb D; Daněk P; Terzijski I
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31454919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Benefits of Using Expansive and Shrinkage Reducing Admixture on High-Performance Concrete.
    Yuan TF; Kim SK; Koh KT; Yoon YS
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calibration of Steel Rings for the Measurement of Strain and Shrinkage Stress for Cement-Based Composites.
    Zieliński A; Kaszyńska M
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Thermal and Shrinkage Stresses in Restrained High-Performance Concrete.
    Yang Y; Ma L; Huang J; Gu C; Xu Z; Liu J; Ni T
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Zeolite on Shrinkage and Crack Resistance of High-Performance Cement-Based Concrete.
    Thang NC; Tuan NV; Yang KH; Phung QT
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32859074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Rapid Heat Treatment on the Shrinkage and Strength of High-Performance Concrete.
    Stindt J; Forman P; Mark P
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the Water-Binder Ratio on the Autogenous Shrinkage of C50 Mass Concrete Mixed with MgO Expansion Agent.
    Chen J; Mao Z; Huang X; Deng M
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory Investigation on the Shrinkage Cracking of Waste Fiber-Reinforced Recycled Aggregate Concrete.
    Wu X; Zhou J; Kang T; Wang F; Ding X; Wang S
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Different Fineness of Cement on the Autogenous Shrinkage of Mass Concrete under Variable Temperature Conditions.
    Gong J; Mao Z; Cao Z; Huang X; Deng M
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Steel Plates and Studs on Shrinkage Behavior and Cracking Potential of High-Performance Concrete.
    Huang L; Hua J; Kang M; Luo Q; Zhou F
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of Shrinkage Strain within the Depth of Concrete Beams.
    Jeong JH; Park YS; Lee YH
    Materials (Basel); 2015 Nov; 8(11):7780-7794. PubMed ID: 28793677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shrinkage and Mechanical Properties of Self-Compacting SFRC With Calcium-Sulfoaluminate Expansive Agent.
    Li C; Shang P; Li F; Feng M; Zhao S
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Experimental Study of Dynamic Compression Performance of Self-Compacting Concrete.
    Shi F; Cao P; Wang Z; Gan Y; Zhou C; Liu K
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32846989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Pre-Wetted Zeolite Sands on the Autogenous Shrinkage and Strength of Ultra-High-Performance Concrete.
    Zhang GZ; Wang XY
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32443906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Working Temperature Conditions on the Autogenous Deformation of High-Performance Concrete Mixed with MgO Expansive Agent.
    Cao Z; Mao Z; Gong J; Huang X; Deng M
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete.
    Gamnitzer P; Brugger A; Drexel M; Hofstetter G
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyapatite-coated strain gauges for long-term in vivo bone strain measurements.
    Maliniak MM; Szivek JA; DeYoung DW; Emmanual J
    J Appl Biomater; 1993; 4(2):143-52. PubMed ID: 10171661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Cooking Oil on the Mitigation of Autogenous Shrinkage of Alkali-Activated Slag Concrete.
    Huang J; Yan J; Liu K; Wei B; Zou C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Early Age-Curing Methods on Drying Shrinkage of Alkali-Activated Slag Concrete.
    Cai Y; Yu L; Yang Y; Gao Y; Yang C
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31109048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of Autogenous Shrinkage in High-Strength Mortars with Saturated Tea Waste Particles.
    Jakhrani SH; Ryou JS; ; Jeon IK; Woo BH; Kim HG
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.