These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31454930)

  • 1. MW-PPG Sensor: An on-Chip Spectrometer Approach.
    Chang CC; Wu CT; Choi BI; Fang TJ
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Portable All-Wavelength PPG Sensing Device for Robust Adaptive-Depth Measurement: A Spectrometer Approach with a Hydrostatic Measurement Example.
    Chen SH; Chuang YC; Chang CC
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Wearable Multi-Wavelength Photoplethysmography.
    Ray D; Collins T; Woolley S; Ponnapalli P
    IEEE Rev Biomed Eng; 2023; 16():136-151. PubMed ID: 34669577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms.
    Baciu VE; Lambert Cause J; Solé Morillo Á; García-Naranjo JC; Stiens J; da Silva B
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Multi-Parametric Sensor System for Comprehensive Multi-Wavelength Photoplethysmography Characterization.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Contact Pressure in Reflectance Photoplethysmography in an In Vitro Tissue-Vessel Phantom.
    May JM; Mejía-Mejía E; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffuse transmittance visible spectroscopy using smartphone flashlight for photoplethysmography and vital signs measurements.
    Bachir W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123181. PubMed ID: 37506454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography.
    Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A
    Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO
    Dcosta JV; Ochoa D; Sanaur S
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302752. PubMed ID: 37740697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PPG EduKit: An Adjustable Photoplethysmography Evaluation System for Educational Activities.
    Solé Morillo Á; Lambert Cause J; Baciu VE; da Silva B; Garcia-Naranjo JC; Stiens J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography.
    Ballaji HK; Correia R; Korposh S; Hayes-Gill BR; Hernandez FU; Salisbury B; Morgan SP
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring-A Review.
    Azudin K; Gan KB; Jaafar R; Ja'afar MH
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography.
    Hina A; Saadeh W
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):504-515. PubMed ID: 32149655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Vascular Depth-Dependent Changes in Multi-Wavelength PPG Signals Due to Contact Force.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plug-and-play, single-chip photoplethysmography.
    Chandrasekar D; Arnetz B; Levy P; Basu AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3243-6. PubMed ID: 23366617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-Site, Multi-Wavelength PPG Platform for Continuous Non-Invasive Health Monitoring in Hospital Settings.
    Karolcik S; Ming DK; Yacoub S; Holmes AH; Georgiou P
    IEEE Trans Biomed Circuits Syst; 2023 Apr; 17(2):349-361. PubMed ID: 37163387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.