BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31455002)

  • 1. CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition.
    Bai L; Hu H; Chen X; Sun Y; Ma C; Zhong Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31455002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the non-reciprocating legged gait for a hexapod robot based on the ePaddle-EGM.
    Zhao J; Pu H; Zou J; Sun Y; Ma S
    Robotics Biomim; 2016; 3():9. PubMed ID: 27419002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fault-tolerant locomotion of the hexapod robot.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(1):109-16. PubMed ID: 18255929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fault tolerant gait for a hexapod robot over uneven terrain.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):172-80. PubMed ID: 18244739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Wheel-Legged Hexapod Robot.
    Ni Y; Li L; Qiu J; Sun Y; Qin G; Han Q; Ji A
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Planning and Stability Control of a Quadruped Robot.
    Li J; Wang J; Yang SX; Zhou K; Tang H
    Comput Intell Neurosci; 2016; 2016():9853070. PubMed ID: 27143959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
    Ambe Y; Aoi S; Nachstedt T; Manoonpong P; Wörgötter F; Matsuno F
    PLoS One; 2018; 13(2):e0192469. PubMed ID: 29489831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climbing favours the tripod gait over alternative faster insect gaits.
    Ramdya P; Thandiackal R; Cherney R; Asselborn T; Benton R; Ijspeert AJ; Floreano D
    Nat Commun; 2017 Feb; 8():14494. PubMed ID: 28211509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization strategies to obtain smooth gait transitions through biologically plausible central pattern generators.
    Baruzzi V; Lodi M; Storace M
    Phys Rev E; 2024 Jan; 109(1-1):014404. PubMed ID: 38366407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning.
    Ouyang W; Chi H; Pang J; Liang W; Ren Q
    Front Neurorobot; 2021; 15():627157. PubMed ID: 33574748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turning and Radius Deviation Correction for a Hexapod Walking Robot Based on an Ant-Inspired Sensory Strategy.
    Zhu Y; Guo T; Liu Q; Zhu Q; Zhao X; Jin B
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control strategy of stable walking for a hexapod wheel-legged robot.
    Chen Z; Wang S; Wang J; Xu K; Lei T; Zhang H; Wang X; Liu D; Si J
    ISA Trans; 2021 Feb; 108():367-380. PubMed ID: 32950232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic turning and running of a hexapod robot using a separated and laterally arranged two-leg model.
    Chang IC; Lin PC
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36947883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TALBOT: A Track-Leg Transformable Robot.
    Guo W; Qiu J; Xu X; Wu J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TeCVP: A Time-Efficient Control Method for a Hexapod Wheel-Legged Robot Based on Velocity Planning.
    Sun J; Sun Z; Li J; Wang C; Jing X; Wei Q; Liu B; Yan C
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attitude Trajectory Optimization to Ensure Balance Hexapod Locomotion.
    Chen C; Guo W; Wang P; Sun L; Zha F; Shi J; Li M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.