BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31455024)

  • 41. Polyesters from Macrolactones Using Commercial Lipase NS 88011 and Novozym 435 as Biocatalysts.
    Polloni AE; Chiaradia V; Figura EM; De Paoli JP; de Oliveira D; de Oliveira JV; de Araujo PHH; Sayer C
    Appl Biochem Biotechnol; 2018 Feb; 184(2):659-672. PubMed ID: 28836123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of thermal characteristics and degradation properties of epsilon-caprolactone copolymers.
    Lin WJ
    J Biomed Mater Res; 1999 Dec; 47(3):420-3. PubMed ID: 10487895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of magnetic microspheres based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers by modified solvent diffusion method.
    Men K; Zeng S; Gou M; Guo G; Gu YC; Luo F; Zhao X; Wei Y; Qian Z
    J Biomed Nanotechnol; 2010 Jun; 6(3):287-92. PubMed ID: 21179946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MRI-visible poly(ε-caprolactone) with controlled contrast agent ratios for enhanced visualization in temporary imaging applications.
    El Habnouni S; Nottelet B; Darcos V; Porsio B; Lemaire L; Franconi F; Garric X; Coudane J
    Biomacromolecules; 2013 Oct; 14(10):3626-34. PubMed ID: 24007393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation.
    Khan I; Ray Dutta J; Ganesan R
    Int J Biol Macromol; 2017 Feb; 95():126-131. PubMed ID: 27865950
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lipase-catalyzed biodegradation of poly(epsilon-caprolactone) blended with various polylactide-based polymers.
    Li S; Liu L; Garreau H; Vert M
    Biomacromolecules; 2003; 4(2):372-7. PubMed ID: 12625734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(epsilon-caprolactone): synthesis and characterization.
    Timbart L; Renard E; Langlois V; Guerin P
    Macromol Biosci; 2004 Nov; 4(11):1014-20. PubMed ID: 15540249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Furan-Based Copolyesters from Renewable Resources: Enzymatic Synthesis and Properties.
    Maniar D; Jiang Y; Woortman AJJ; van Dijken J; Loos K
    ChemSusChem; 2019 Mar; 12(5):990-999. PubMed ID: 30637973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amphiphilic Pentablock Copolymers Prepared from Pluronic and ε-Caprolactone by Enzymatic Ring Opening Polymerization.
    El-Fattah AA; Grillo Fernandes E; Chiellini F; Chiellini E
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163317
    [TBL] [Abstract][Full Text] [Related]  

  • 50.
    Conde G; de Carvalho JRG; Dias PDP; Moranza HG; Montanhim GL; Ribeiro JO; Chinelatto MA; Moraes PC; Taboga SR; Bertolo PHL; Gonçalves Funnicelli MI; Pinheiro DG; Ferraz GC
    Biomed Phys Eng Express; 2021 Mar; 7(3):. PubMed ID: 33652429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selected Physicochemical and Pharmaceutical Properties of Poly-
    Urbaniak T; Musiał W
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31861191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of poly(ε-caprolactone) by an immobilized lipase coated with ionic liquids in a solvent-free condition.
    Wu C; Zhang Z; Chen C; He F; Zhuo R
    Biotechnol Lett; 2013 Oct; 35(10):1623-30. PubMed ID: 23708876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-aggregation of cationically modified poly(ε-caprolactone)
    Charoongchit P; Suksiriworapong J; Sripha K; Mao S; Sapin-Minet A; Maincent P; Junyaprasert VB
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():444-455. PubMed ID: 28024608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels.
    Engel S; Höck H; Bocola M; Keul H; Schwaneberg U; Möller M
    Polymers (Basel); 2016 Oct; 8(10):. PubMed ID: 30974648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase.
    Shi K; Jing J; Song L; Su T; Wang Z
    Int J Biol Macromol; 2020 Feb; 144():183-189. PubMed ID: 31843602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphazene Functionalized Silsesquioxane-Based Porous Polymer as Thermally Stable and Reusable Catalyst for Bulk Ring-Opening Polymerization of ε-Caprolactone.
    Piskun YA; Ksendzov EA; Resko AV; Soldatov MA; Timashev P; Liu H; Vasilenko IV; Kostjuk SV
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.
    Gustini L; Lavilla C; Janssen WW; Martínez de Ilarduya A; Muñoz-Guerra S; Koning CE
    ChemSusChem; 2016 Aug; 9(16):2250-60. PubMed ID: 27406029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Yarrowia lipolytica Extracellular Lipase Lip2 as Biocatalyst for the Ring-Opening Polymerization of ε-Caprolactone.
    Barrera-Rivera KA; Martínez-Richa A
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29112152
    [No Abstract]   [Full Text] [Related]  

  • 59. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters.
    Duchiron SW; Pollet E; Givry S; Avérous L
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and characterization of magnetic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) microspheres.
    Gou ML; Qian ZY; Wang H; Tang YB; Huang MJ; Kan B; Wen YJ; Dai M; Li XY; Gong CY; Tu MJ
    J Mater Sci Mater Med; 2008 Mar; 19(3):1033-41. PubMed ID: 17701292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.