These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 31455026)

  • 1. Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.
    Xuan P; Li L; Zhang T; Zhang Y; Song Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31455026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring disease-associated microRNAs in heterogeneous networks with node attributes.
    Xuan P; Shen T; Wang X; Zhang T; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Sep; ():. PubMed ID: 30281474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction.
    Xuan P; Wang D; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34634106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting miRNA-Disease Associations by Incorporating Projections in Low-Dimensional Space and Local Topological Information.
    Xuan P; Zhang Y; Zhang T; Li L; Zhao L
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs.
    Xuan P; Dong Y; Guo Y; Zhang T; Liu Y
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WBNPMD: weighted bipartite network projection for microRNA-disease association prediction.
    Xie G; Fan Z; Sun Y; Wu C; Ma L
    J Transl Med; 2019 Sep; 17(1):322. PubMed ID: 31547811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NTSMDA: prediction of miRNA-disease associations by integrating network topological similarity.
    Sun D; Li A; Feng H; Wang M
    Mol Biosyst; 2016 Jun; 12(7):2224-32. PubMed ID: 27153230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities.
    Lan W; Wang J; Li M; Liu J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1774-1782. PubMed ID: 27392365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hessian Regularized [Formula: see text]-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction.
    Han GS; Gao Q; Peng LZ; Tang J
    Interdiscip Sci; 2024 Mar; 16(1):176-191. PubMed ID: 38099958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RBMMMDA: predicting multiple types of disease-microRNA associations.
    Chen X; Yan CC; Zhang X; Li Z; Deng L; Zhang Y; Dai Q
    Sci Rep; 2015 Sep; 5():13877. PubMed ID: 26347258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph regularized L
    Gao Z; Wang YT; Wu QW; Ni JC; Zheng CH
    BMC Bioinformatics; 2020 Feb; 21(1):61. PubMed ID: 32070280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.
    Chen X; Jiang ZC; Xie D; Huang DS; Zhao Q; Yan GY; You ZH
    Mol Biosyst; 2017 May; 13(6):1202-1212. PubMed ID: 28470244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.
    Shi H; Zhang G; Zhou M; Cheng L; Yang H; Wang J; Sun J; Wang Z
    PLoS One; 2016; 11(2):e0148521. PubMed ID: 26849207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs and complex diseases: from experimental results to computational models.
    Chen X; Xie D; Zhao Q; You ZH
    Brief Bioinform; 2019 Mar; 20(2):515-539. PubMed ID: 29045685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of potential disease-associated microRNAs using structural perturbation method.
    Zeng X; Liu L; Lü L; Zou Q
    Bioinformatics; 2018 Jul; 34(14):2425-2432. PubMed ID: 29490018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.