These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 3145561)
1. The role of phosphatidylinositides in stimulus-secretion coupling in the exocrine pancreas. Schulz I; Schnefel S; Banfić H; Thévenod F; Kemmer T; Eckhardt L Soc Gen Physiol Ser; 1987; 42():117-31. PubMed ID: 3145561 [TBL] [Abstract][Full Text] [Related]
2. Receptor-mediated signalling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes. Lamers JM; De Jonge HW; Panagia V; Van Heugten HA Cardioscience; 1993 Sep; 4(3):121-31. PubMed ID: 8400019 [TBL] [Abstract][Full Text] [Related]
3. [Regulation mechanisms of receptors mediated activation of phospholipase c and inositol-1,4,5-triphosphate sensitive Ca2+ release and Ca2+ uptake in exocrine glandular cells]. Schulz I; Thévenod F; Schnefel S; Schäfer R Arzneimittelforschung; 1989 Jan; 39(1A):168-73. PubMed ID: 2655616 [TBL] [Abstract][Full Text] [Related]
5. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation. Krause KH; Schlegel W; Wollheim CB; Andersson T; Waldvogel FA; Lew PD J Clin Invest; 1985 Oct; 76(4):1348-54. PubMed ID: 3877077 [TBL] [Abstract][Full Text] [Related]
6. Stimulation of Fc(alpha) receptors induces tyrosine phosphorylation of phospholipase C-gamma(1), phosphatidylinositol phosphate hydrolysis, and Ca2+ mobilization in rat and human mesangial cells. Gómez-Guerrero C; Duque N; Egido J J Immunol; 1996 Jun; 156(11):4369-76. PubMed ID: 8666809 [TBL] [Abstract][Full Text] [Related]
7. Role of guanine nucleotide regulatory protein in polyphosphoinositide degradation and activation of phagocytic leukocytes by chemoattractants. Verghese MW; Smith CD; Snyderman R J Cell Biochem; 1986; 32(1):59-69. PubMed ID: 3021789 [TBL] [Abstract][Full Text] [Related]
8. Stimulus-secretion coupling in exocrine glands: the role of inositol-1,4,5-trisphosphate, calcium and cAMP. Schulz I; Streb H; Bayerdörffer E; Thévenod F Curr Eye Res; 1985 Apr; 4(4):467-73. PubMed ID: 2990822 [TBL] [Abstract][Full Text] [Related]
9. Nitric oxide modulation of agonist-evoked intracellular Ca2+ release in neurosecretory PC-12 cells: inhibition of phospholipase C activity via cyclic GMP-dependent protein kinase I. Clementi E; Vecchio I; Sciorati C; Nisticò G Mol Pharmacol; 1995 Mar; 47(3):517-24. PubMed ID: 7535379 [TBL] [Abstract][Full Text] [Related]
10. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes. Noh SJ; Kim MJ; Shim S; Han JK J Cell Physiol; 1998 Aug; 176(2):412-23. PubMed ID: 9648929 [TBL] [Abstract][Full Text] [Related]
11. Role of inositol lipid breakdown in the generation of intracellular signals. State of the art lecture. Williamson JR Hypertension; 1986 Jun; 8(6 Pt 2):II140-56. PubMed ID: 3013767 [TBL] [Abstract][Full Text] [Related]
12. Formation and biological action of inositol 1,4,5-trisphosphate. Putney JW; Aub DL; Taylor CW; Merritt JE Fed Proc; 1986 Oct; 45(11):2634-8. PubMed ID: 3019783 [TBL] [Abstract][Full Text] [Related]
13. Phospholipase C activation by Na+/Ca2+ exchange is essential for monensin-induced Ca2+ influx and arachidonic acid release in FRTL-5 thyroid cells. Wang XD; Kiang JG; Scheibel LW; Smallridge RC J Investig Med; 1999 Sep; 47(8):388-96. PubMed ID: 10510591 [TBL] [Abstract][Full Text] [Related]
14. A tyrosine kinase signaling pathway, regulated by calcium entry and dissociated from tyrosine phosphorylation of phospholipase Cgamma-1, is involved in inositol phosphate production by activated G protein-coupled receptors in myometrium. Palmier B; Vacher M; Harbon S; Leiber D J Pharmacol Exp Ther; 1999 May; 289(2):1022-30. PubMed ID: 10215683 [TBL] [Abstract][Full Text] [Related]
15. Specific galpha11beta3gamma5 protein involvement in endothelin receptor-induced phosphatidylinositol hydrolysis and Ca2+ release in rat portal vein myocytes. Macrez N; Morel JL; Mironneau J Mol Pharmacol; 1999 Apr; 55(4):684-92. PubMed ID: 10101026 [TBL] [Abstract][Full Text] [Related]
16. Calcium and the endothelin-1 and alpha 1-adrenergic stimulated phosphatidylinositol cycle in cultured rat cardiomyocytes. van Heugten HA; de Jonge HW; Bezstarosti K; Lamers JM J Mol Cell Cardiol; 1994 Aug; 26(8):1081-93. PubMed ID: 7528283 [TBL] [Abstract][Full Text] [Related]
17. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. Albert JL; Boyle JP; Roberts JA; Challiss RA; Gubby SE; Boarder MR Br J Pharmacol; 1997 Nov; 122(5):935-41. PubMed ID: 9384512 [TBL] [Abstract][Full Text] [Related]
18. MEK and ERK activation in ras-disabled RBL-2H3 mast cells and novel roles for geranylgeranylated and farnesylated proteins in Fc epsilonRI-mediated signaling. Graham TE; Pfeiffer JR; Lee RJ; Kusewitt DF; Martinez AM; Foutz T; Wilson BS; Oliver JM J Immunol; 1998 Dec; 161(12):6733-44. PubMed ID: 9862703 [TBL] [Abstract][Full Text] [Related]
19. NMDA-receptor regulation of muscarinic-receptor stimulated inositol 1,4,5-trisphosphate production and protein kinase C activation in single cerebellar granule neurons. Young KW; Garro MA; Challiss RA; Nahorski SR J Neurochem; 2004 Jun; 89(6):1537-46. PubMed ID: 15189357 [TBL] [Abstract][Full Text] [Related]
20. Specific Gq protein involvement in muscarinic M3 receptor-induced phosphatidylinositol hydrolysis and Ca2+ release in mouse duodenal myocytes. Morel JL; Macrez N; Mironneau J Br J Pharmacol; 1997 Jun; 121(3):451-8. PubMed ID: 9179386 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]