BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31455735)

  • 1. Multiple sensory neurons mediate starvation-dependent aversive navigation in
    Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.
    Adachi T; Kunitomo H; Tomioka M; Ohno H; Okochi Y; Mori I; Iino Y
    Genetics; 2010 Dec; 186(4):1309-19. PubMed ID: 20837997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Gustatory Neural Circuit of
    Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y
    J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple p38/JNK mitogen-activated protein kinase (MAPK) signaling pathways mediate salt chemotaxis learning in C. elegans.
    Huang T; Suzuki K; Kunitomo H; Tomioka M; Iino Y
    G3 (Bethesda); 2023 Aug; 13(9):. PubMed ID: 37310929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.
    Tomioka M; Adachi T; Suzuki H; Kunitomo H; Schafer WR; Iino Y
    Neuron; 2006 Sep; 51(5):613-25. PubMed ID: 16950159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling.
    Nagashima T; Iino Y; Tomioka M
    PLoS Genet; 2019 Jul; 15(7):e1008297. PubMed ID: 31323047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis elegans.
    Iwata R; Oda S; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2011 May; 108(18):7589-94. PubMed ID: 21502506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate signaling from a single sensory neuron mediates experience-dependent bidirectional behavior in Caenorhabditis elegans.
    Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    Cell Rep; 2021 May; 35(8):109177. PubMed ID: 34038738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of chemotaxis and associative learning in C. elegans.
    Appleby PA
    Biol Cybern; 2012 Sep; 106(6-7):373-87. PubMed ID: 22824944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit.
    Watteyne J; Peymen K; Van der Auwera P; Borghgraef C; Vandewyer E; Van Damme S; Rutten I; Lammertyn J; Jelier R; Schoofs L; Beets I
    Nat Commun; 2020 Apr; 11(1):2076. PubMed ID: 32350283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of CaMKI Function Disrupts Salt Aversive Learning in
    Lim JP; Fehlauer H; Das A; Saro G; Glauser DA; Brunet A; Goodman MB
    J Neurosci; 2018 Jul; 38(27):6114-6129. PubMed ID: 29875264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of the ClC chloride channel CLH-1 in food-associated salt chemotaxis behavior of
    Park C; Sakurai Y; Sato H; Kanda S; Iino Y; Kunitomo H
    Elife; 2021 Jan; 10():. PubMed ID: 33492228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Presynaptic Diacylglycerol in a Sensory Neuron Encode Differences between Past and Current Stimulus Intensity.
    Ohno H; Sakai N; Adachi T; Iino Y
    Cell Rep; 2017 Sep; 20(10):2294-2303. PubMed ID: 28877465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes.
    Tomioka M; Jang MS; Iino Y
    Commun Biol; 2022 Jan; 5(1):30. PubMed ID: 35017611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans.
    Hiroki S; Yoshitane H; Mitsui H; Sato H; Umatani C; Kanda S; Fukada Y; Iino Y
    Nat Commun; 2022 May; 13(1):2928. PubMed ID: 35624091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of Spatial Thermal Gradient Encoded in Thermosensory Neuron AFD in Caenorhabditis elegans.
    Tsukada Y; Yamao M; Naoki H; Shimowada T; Ohnishi N; Kuhara A; Ishii S; Mori I
    J Neurosci; 2016 Mar; 36(9):2571-81. PubMed ID: 26936999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans.
    Sassa T; Murayama T; Maruyama IN
    Neurosci Lett; 2013 Oct; 555():248-52. PubMed ID: 23769685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases.
    Ortiz CO; Faumont S; Takayama J; Ahmed HK; Goldsmith AD; Pocock R; McCormick KE; Kunimoto H; Iino Y; Lockery S; Hobert O
    Curr Biol; 2009 Jun; 19(12):996-1004. PubMed ID: 19523832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.