These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31455797)

  • 1. Utilizing polarization-selective mode shaping by chalcogenide thin film to enhance the performance of graphene-based integrated optical devices.
    Nikbakht H; Latifi H; Parsanasab GM; Taghavi M; Riyahi M
    Sci Rep; 2019 Aug; 9(1):12446. PubMed ID: 31455797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Broadband and Compact TM-Pass Polarizer Based on Graphene-Buried Polymer Waveguide.
    Lin B; Lian T; Sun S; Zhu M; Che Y; Sun X; Wang X; Zhang D
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilizing thermally induced selective mode shaping for a high extinction ratio in-line fiber modulator/polarizer.
    Heidari M
    Opt Lett; 2021 Sep; 46(18):4574-4577. PubMed ID: 34525050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High extinction ratio D-shaped fiber polarizers coated by a double graphene/PMMA stack.
    Chu R; Guan C; Yang J; Zhu Z; Li P; Shi J; Tian P; Yuan L; Brambilla G
    Opt Express; 2017 Jun; 25(12):13278-13285. PubMed ID: 28788863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization Selectivity of the Thin-Metal-Film Plasmon-Assisted Fiber-Optic Polarizer.
    Wang X; Lin J; Sun W; Tan Z; Liu R; Wang Z
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32189-32196. PubMed ID: 32551488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact, low-loss, and high-polarized-extinction ratio terahertz TM-pass polarizer based on a hybrid plasmonic waveguide with a graphene ridge.
    Xu J; Yao H; Chi T; Cheng H; Yue W; Liu B; Zhang X; Li S; Zhang B; Lu Y; Liu N
    Appl Opt; 2024 May; 63(15):4125-4130. PubMed ID: 38856506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance all-silicon polarizer with 415  nm bandwidth.
    Liu W; Dai D; Shi Y
    Opt Lett; 2021 Mar; 46(6):1321-1324. PubMed ID: 33720177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide.
    Yin X; Zhang T; Chen L; Li X
    Opt Lett; 2015 Apr; 40(8):1733-6. PubMed ID: 25872060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides.
    Dai D; Wang Z; Julian N; Bowers JE
    Opt Express; 2010 Dec; 18(26):27404-15. PubMed ID: 21197017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance silicon TE-pass polarizer assisted by anisotropic metamaterials.
    Lin Z; Li X; He S
    Opt Express; 2022 Jul; 30(14):24841-24851. PubMed ID: 36237028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental realization of an O-band compact polarization splitter and rotator.
    Tan K; Huang Y; Lo GQ; Yu C; Lee C
    Opt Express; 2017 Feb; 25(4):3234-3241. PubMed ID: 28241539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TE/TM mode electro-optic conversion based on a titanium diffusion lithium niobate waveguide with a polarization-maintained fiber structure.
    Li Y; Yang Z; Chen H; Liu R; Peng J; Fu F; Yang T; Guan H; Yang X; Di H; Lu H
    Appl Opt; 2023 Nov; 62(32):8661-8669. PubMed ID: 38037983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh extinction ratio and ultra-low insertion loss silicon TE polarizer covering 1260-1675 nm bandwidth.
    Li X; Lin Z; He S
    Opt Lett; 2022 Apr; 47(8):2065-2068. PubMed ID: 35427338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High performance TM-pass polarizer using multimode Bragg grating waveguide.
    Xu Z; Tu B; Liu H
    Opt Express; 2024 Apr; 32(8):13156-13165. PubMed ID: 38859293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double D-shaped hole optical fiber coated with graphene as a polarizer.
    Chen S; Tian F; Li L; Qu H; Su Z; Zhang J
    Appl Opt; 2018 Sep; 57(27):7659-7666. PubMed ID: 30462029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Ultra-High Extinction Ratio TM- and TE-Pass Polarizers Based on Si-Sc
    Xie X; Liu F; Chen Q; Zhang Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CMOS-compatible multi-band plasmonic TE-pass polarizer.
    Abadía N; Saber MG; Bello F; Samani A; El-Fiky E; Wang Y; Donegan JF; Plant DV
    Opt Express; 2018 Nov; 26(23):30292-30304. PubMed ID: 30469904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip multifunctional polarizer based on phase change material.
    Long Y; Fei Y; Xu Y; Ni Y
    Appl Opt; 2023 Oct; 62(30):8025-8033. PubMed ID: 38038097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Loss Broadband Transverse Electric Pass Hybrid Plasmonic Fiber Polarizers Using Metallic Nanomaterials.
    Wang X; Li J; Wang X; Tan Z; Chen R; Deng X; Wang Z
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14718-14727. PubMed ID: 33728892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of single-mode fiber-type polarizer.
    Hosaka T; Okamoto K; Edahiro T
    Opt Lett; 1983 Feb; 8(2):124-6. PubMed ID: 19714158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.