BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31455800)

  • 1. Modelling of substrate access and substrate binding to cephalosporin acylases.
    Ferrario V; Fischer M; Zhu Y; Pleiss J
    Sci Rep; 2019 Aug; 9(1):12402. PubMed ID: 31455800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategic manipulation of an industrial biocatalyst--evolution of a cephalosporin C acylase.
    Conti G; Pollegioni L; Molla G; Rosini E
    FEBS J; 2014 May; 281(10):2443-55. PubMed ID: 24684708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity.
    Tian Y; Huang X; Li Q; Zhu Y
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):621-632. PubMed ID: 27557716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 2.0 A crystal structure of cephalosporin acylase.
    Kim Y; Yoon K; Khang Y; Turley S; Hol WG
    Structure; 2000 Oct; 8(10):1059-68. PubMed ID: 11080627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase.
    Otten LG; Sio CF; van der Sloot AM; Cool RH; Quax WJ
    Chembiochem; 2004 Jun; 5(6):820-5. PubMed ID: 15174165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a CPC acylase using a facile pH indicator assay.
    Xiao Y; Huo X; Qian Y; Zhang Y; Chen G; Ouyang P; Lin Z
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1617-25. PubMed ID: 25217845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity.
    Golden E; Paterson R; Tie WJ; Anandan A; Flematti G; Molla G; Rosini E; Pollegioni L; Vrielink A
    Biochem J; 2013 Apr; 451(2):217-26. PubMed ID: 23373797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking.
    Li Q; Huang X; Zhu Y
    J Mol Model; 2014 Jul; 20(7):2314. PubMed ID: 24935111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes.
    Sonawane VC
    Crit Rev Biotechnol; 2006; 26(2):95-120. PubMed ID: 16809100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly active adipyl-cephalosporin acylase obtained via rational randomization.
    Otten LG; Sio CF; Reis CR; Koch G; Cool RH; Quax WJ
    FEBS J; 2007 Nov; 274(21):5600-10. PubMed ID: 17922842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oriented immobilization and characterization of a poly-lysine-tagged cephalosporin C acylase on glyoxyl agarose support.
    Luo H; Zhao H; Chang Y; Wang Q; Yu H; Shen Z
    Appl Biochem Biotechnol; 2015 Feb; 175(4):2114-23. PubMed ID: 25448633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling of different substrate-binding modes and their role in penicillin acylase catalysis.
    Novikov FN; Stroganov OV; Khaliullin IG; Panin NV; Shapovalova IV; Chilov GG; Svedas VK
    FEBS J; 2013 Jan; 280(1):115-26. PubMed ID: 23121694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130.
    Li Y; Chen J; Jiang W; Mao X; Zhao G; Wang E
    Eur J Biochem; 1999 Jun; 262(3):713-9. PubMed ID: 10411632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of substrate selection of antibiotic acylase from β-lactam to echinocandin.
    Isogai Y; Nakayama K
    Protein Eng Des Sel; 2016 Feb; 29(2):49-56. PubMed ID: 26590167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein engineering of a cephalosporin C acylase from Pseudomonas strain N176.
    Saito Y; Ishii Y; Fujimura T; Sasaki H; Noguchi Y; Yamada H; Niwa M; Shimomura K
    Ann N Y Acad Sci; 1996 May; 782():226-40. PubMed ID: 8659899
    [No Abstract]   [Full Text] [Related]  

  • 16. Improving the activity and stability of GL-7-ACA acylase CA130 by site-directed mutagenesis.
    Zhang W; Liu Y; Zheng H; Yang S; Jiang W
    Appl Environ Microbiol; 2005 Sep; 71(9):5290-6. PubMed ID: 16151116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues.
    Oh B; Kim M; Yoon J; Chung K; Shin Y; Lee D; Kim Y
    Biochem Biophys Res Commun; 2003 Oct; 310(1):19-27. PubMed ID: 14511642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis.
    Yin J; Deng Z; Zhao G; Huang X
    J Biol Chem; 2011 Jul; 286(27):24476-86. PubMed ID: 21576250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176.
    Ishii Y; Saito Y; Fujimura T; Sasaki H; Noguchi Y; Yamada H; Niwa M; Shimomura K
    Eur J Biochem; 1995 Jun; 230(2):773-8. PubMed ID: 7607251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of a glutaryl acylase into an adipyl acylase.
    Sio CF; Riemens AM; van der Laan JM; Verhaert RM; Quax WJ
    Eur J Biochem; 2002 Sep; 269(18):4495-504. PubMed ID: 12230561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.