These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31455849)
1. Selective and Preferential Separation of Rhodium (III) from Palladium (II) and Platinum (IV) Using a m-Phenylene Diamine-Containing Precipitant. Matsumoto K; Yamakawa S; Haga K; Ishibashi K; Jikei M; Shibayama A Sci Rep; 2019 Aug; 9(1):12414. PubMed ID: 31455849 [TBL] [Abstract][Full Text] [Related]
2. Preferential Precipitation and Selective Separation of Rh(III) from Pd(II) and Pt(IV) Using 4-Alkylanilines as Precipitants. Matsumoto K; Yamakawa S; Sezaki Y; Katagiri H; Jikei M ACS Omega; 2019 Jan; 4(1):1868-1873. PubMed ID: 31459442 [TBL] [Abstract][Full Text] [Related]
3. Unique Anion-exchange Properties of 3,3'-Diaminobenzidine Resulting in High Selectivity for Rhodium(III) over Palladium(II) and Platinum(IV) in a Concentrated Hydrochloric Acid Solution. Suzuki T; Ogata T; Tanaka M; Kobayashi T; Shiwaku H; Yaita T; Narita H Anal Sci; 2019 Dec; 35(12):1353-1360. PubMed ID: 31447471 [TBL] [Abstract][Full Text] [Related]
4. Highly Selective Rh(III) Recovery from HCl Solutions Using Aromatic Primary Diamines via Formation of Three-Dimensional Ionic Crystals. Matsumoto K; Hata Y; Sezaki Y; Katagiri H; Jikei M ACS Omega; 2019 Sep; 4(11):14613-14620. PubMed ID: 31528816 [TBL] [Abstract][Full Text] [Related]
5. Ion flotation of rhodium(III) and palladium(II) with anionic surfactants. He XC Talanta; 1991 Mar; 38(3):319-23. PubMed ID: 18965147 [TBL] [Abstract][Full Text] [Related]
6. Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe(3)O(4) nanoparticles. Uheida A; Iglesias M; Fontàs C; Hidalgo M; Salvadó V; Zhang Y; Muhammed M J Colloid Interface Sci; 2006 Sep; 301(2):402-8. PubMed ID: 16780854 [TBL] [Abstract][Full Text] [Related]
7. Separation and Recovery of Gold(III), Palladium(II) and Platinum(IV) by Solvent Extraction Using a New β-Diketone Derivative from Acidic Solutions. Radzyminska-Lenarcik E; Pyszka I; Kosciuszko A Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442959 [TBL] [Abstract][Full Text] [Related]
8. The metallobiochemistry of ultratrace levels of platinum group elements in the rat. Sabbioni E; Fortaner S; Manenti S; Groppi F; Bonardi M; Bosisio S; Di Gioacchino M Metallomics; 2015 Feb; 7(2):267-76. PubMed ID: 25561341 [TBL] [Abstract][Full Text] [Related]
9. Block copolymer micellization induced microphase mass transfer: partition of Pd(II), Pt(IV) and Rh(III) in three-liquid-phase systems of S201-EOPO-Na2SO4-H2O. Yu P; Huang K; Zhang C; Xie K; He X; Zhao J; Deng F; Liu H J Colloid Interface Sci; 2011 Oct; 362(1):228-34. PubMed ID: 21723561 [TBL] [Abstract][Full Text] [Related]
10. A histopathological study of Hudson River crayfish, Orconectes virilis, exposed to platinum group metals. Wren M; Gagnon ZE J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(2):135-45. PubMed ID: 24171412 [TBL] [Abstract][Full Text] [Related]
11. Recovery of platinum group metal resources from high-level radioactive liquid wastes by non-contact photoreduction. Weng H; Wang Y; Li F; Muroya Y; Yamashita S; Cheng S J Hazard Mater; 2023 Sep; 458():131852. PubMed ID: 37331059 [TBL] [Abstract][Full Text] [Related]
12. Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Zereini F; Wiseman C; Püttmann W Environ Sci Technol; 2007 Jan; 41(2):451-6. PubMed ID: 17310706 [TBL] [Abstract][Full Text] [Related]
13. Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts. Rzelewska-Piekut M; Wiecka Z; Regel-Rosocka M Molecules; 2022 Jan; 27(2):. PubMed ID: 35056704 [TBL] [Abstract][Full Text] [Related]
14. Solid-phase extraction of palladium, platinum, and gold from water samples: comparison between a chelating resin and a chelating fiber with ethylenediamine groups. Iwase M; Isobe K; Zheng L; Takano S; Sohrin Y Anal Sci; 2023 May; 39(5):695-704. PubMed ID: 36656414 [TBL] [Abstract][Full Text] [Related]
15. Integrated computational and experimental protocol for understanding Rh(III) speciation in hydrochloric and nitric acid solutions. Samuels AC; Boele CA; Bennett KT; Clark SB; Wall NA; Clark AE Inorg Chem; 2014 Dec; 53(23):12315-22. PubMed ID: 25390284 [TBL] [Abstract][Full Text] [Related]
16. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry. Eskina VV; Dalnova OA; Filatova DG; Baranovskaya VB; Karpov YA Talanta; 2016 Oct; 159():103-110. PubMed ID: 27474285 [TBL] [Abstract][Full Text] [Related]
17. Platinum group element and cerium concentrations in roadside environments in Toronto, Canada. Wiseman CL; Hassan Pour Z; Zereini F Chemosphere; 2016 Feb; 145():61-7. PubMed ID: 26688240 [TBL] [Abstract][Full Text] [Related]
18. Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: concentrations and spatial patterns of distribution. Zereini F; Alsenz H; Wiseman CL; Püttmann W; Reimer E; Schleyer R; Bieber E; Wallasch M Sci Total Environ; 2012 Feb; 416():261-8. PubMed ID: 22221875 [TBL] [Abstract][Full Text] [Related]
19. Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany. Zereini F; Alt F; Messerschmidt J; von Bohlen A; Liebl K; Püttmann W Environ Sci Technol; 2004 Mar; 38(6):1686-92. PubMed ID: 15074676 [TBL] [Abstract][Full Text] [Related]
20. Ion-imprinted chitosan fiber for recovery of Pd(II): Obtaining high selectivity through selective adsorption and two-step desorption. Mao J; Lin S; Lu XJ; Wu XH; Zhou T; Yun YS Environ Res; 2020 Mar; 182():108995. PubMed ID: 31851945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]