These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31456388)

  • 1. Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device.
    Zheng Y; Wu Z; Khan M; Mao S; Manibalan K; Li N; Lin JM; Lin L
    Anal Chem; 2019 Oct; 91(19):12283-12289. PubMed ID: 31456388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated microfluidic chip for alginate microsphere generation and 3D cell culture.
    Zhou X; Zhu L; Li W; Liu Q
    Anal Methods; 2022 Mar; 14(12):1181-1186. PubMed ID: 35179175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.
    Im P; Ji DH; Kim MK; Kim J
    J Colloid Interface Sci; 2017 May; 494():389-396. PubMed ID: 28171847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform.
    Aung A; Theprungsirikul J; Lim HL; Varghese S
    Lab Chip; 2016 May; 16(10):1886-98. PubMed ID: 27097908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic assembly of hydrogel-based immunogenic tumor spheroids for evaluation of anticancer therapies and biomarker release.
    Sabhachandani P; Sarkar S; Mckenney S; Ravi D; Evens AM; Konry T
    J Control Release; 2019 Feb; 295():21-30. PubMed ID: 30550941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of stable capillary networks using a microfluidic device.
    Sudo R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():350-3. PubMed ID: 26736271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional (3D) organotypic microfluidic model for glioma stem cells - Vascular interactions.
    Truong D; Fiorelli R; Barrientos ES; Melendez EL; Sanai N; Mehta S; Nikkhah M
    Biomaterials; 2019 Apr; 198():63-77. PubMed ID: 30098794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems.
    Buonvino S; Di Giuseppe D; Filippi J; Martinelli E; Seliktar D; Melino S
    Adv Healthc Mater; 2024 Aug; 13(20):e2400040. PubMed ID: 38739022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of perfusable microvascular network morphology using a multiculture microfluidic system.
    Whisler JA; Chen MB; Kamm RD
    Tissue Eng Part C Methods; 2014 Jul; 20(7):543-52. PubMed ID: 24151838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture.
    Li R; Zhang X; Lv X; Geng L; Li Y; Qin K; Deng Y
    Anal Biochem; 2017 Dec; 539():48-53. PubMed ID: 29031457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis.
    Mei X; Middleton K; Shim D; Wan Q; Xu L; Ma YV; Devadas D; Walji N; Wang L; Young EWK; You L
    Integr Biol (Camb); 2019 Apr; 11(4):119-129. PubMed ID: 31125041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.
    Lee JM; Seo HI; Bae JH; Chung BG
    Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of Hepatic Tissue Structures Using Interstitial Flow in a Microfluidic Device.
    Sudo R
    Methods Mol Biol; 2019; 1905():167-174. PubMed ID: 30536099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis.
    Liu J; Chuah YJ; Fu J; Zhu W; Wang DA
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():906-916. PubMed ID: 31147062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.