These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31456487)

  • 1. A narrative review of potential measures of dynamic stability to be used during outdoor locomotion on different surfaces.
    Svenningsen FP; Pavailler S; Giandolini M; Horvais N; Madeleine P
    Sports Biomech; 2020 Feb; 19(1):120-140. PubMed ID: 31456487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.
    Schütte KH; Aeles J; De Beéck TO; van der Zwaard BC; Venter R; Vanwanseele B
    Gait Posture; 2016 Jul; 48():220-225. PubMed ID: 27318455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability.
    Schütte KH; Seerden S; Venter R; Vanwanseele B
    Gait Posture; 2018 Jan; 59():222-228. PubMed ID: 29080511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost of running instability evaluated with wearable trunk accelerometry.
    Schütte KH; Sackey S; Venter R; Vanwanseele B
    J Appl Physiol (1985); 2018 Feb; 124(2):462-472. PubMed ID: 28751372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.
    Schütte KH; Maas EA; Exadaktylos V; Berckmans D; Venter RE; Vanwanseele B
    PLoS One; 2015; 10(10):e0141957. PubMed ID: 26517261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tibial acceleration and shock attenuation while running over different surfaces in a trail environment.
    Garcia MC; Gust G; Bazett-Jones DM
    J Sci Med Sport; 2021 Nov; 24(11):1161-1165. PubMed ID: 33766445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Effects of Habitual Barefoot Running and Walking: A Systematic Review.
    Hollander K; Heidt C; VAN DER Zwaard BC; Braumann KM; Zech A
    Med Sci Sports Exerc; 2017 Apr; 49(4):752-762. PubMed ID: 27801744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ability and stability of running and walking in children with cerebral palsy.
    Iosa M; Morelli D; Marro T; Paolucci S; Fusco A
    Neuropediatrics; 2013 Jun; 44(3):147-54. PubMed ID: 23487325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local dynamic stability during treadmill walking can detect children with developmental coordination disorder.
    Speedtsberg MB; Christensen SB; Stenum J; Kallemose T; Bencke J; Curtis DJ; Jensen BR
    Gait Posture; 2018 Jan; 59():99-103. PubMed ID: 29028627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of walking, running, and jumping movement features by using the inertial measurement unit.
    Lee YS; Ho CS; Shih Y; Chang SY; Róbert FJ; Shiang TY
    Gait Posture; 2015 May; 41(4):877-81. PubMed ID: 25819717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait.
    Tamburini P; Storm F; Buckley C; Bisi MC; Stagni R; Mazzà C
    Gait Posture; 2018 Jan; 59():248-252. PubMed ID: 29100144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of walking speed on the gait of king penguins: An accelerometric approach.
    Willener AS; Handrich Y; Halsey LG; Strike S
    J Theor Biol; 2015 Dec; 387():166-73. PubMed ID: 26427338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Shoe Top Visual Patterns on Shoe Wearers' Width Perception and Dynamic Stability.
    Law JCL; Wong TWL; Chan DCL; Lam WK
    Percept Mot Skills; 2018 Aug; 125(4):682-695. PubMed ID: 29929435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing of a tri-instrumented-treadmill unit for kinetic analysis of locomotion tasks in static and dynamic loading conditions.
    Paolini G; Della Croce U; Riley PO; Newton FK; Casey Kerrigan D
    Med Eng Phys; 2007 Apr; 29(3):404-11. PubMed ID: 16759895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills.
    Montgomery G; Abt G; Dobson C; Smith T; Ditroilo M
    Gait Posture; 2016 Sep; 49():120-126. PubMed ID: 27400020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foot accelerations are larger than tibia accelerations during sprinting when measured with inertial measurement units.
    Glassbrook DJ; Fuller JT; Alderson JA; Doyle TLA
    J Sports Sci; 2020 Feb; 38(3):248-255. PubMed ID: 31726955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review.
    Benson LC; Clermont CA; Bošnjak E; Ferber R
    Gait Posture; 2018 Jun; 63():124-138. PubMed ID: 29730488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection.
    Tan HX; Aung NN; Tian J; Chua MCH; Yang YO
    Gait Posture; 2019 Oct; 74():128-134. PubMed ID: 31518859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.