These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31456654)

  • 41. Flexible Fiber Probe for Efficient Neural Stimulation and Detection.
    Du M; Huang L; Zheng J; Xi Y; Dai Y; Zhang W; Yan W; Tao G; Qiu J; So KF; Ren C; Zhou S
    Adv Sci (Weinh); 2020 Aug; 7(15):2001410. PubMed ID: 32775173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A silicon neural probe fabricated using DRIE on bonded thin silicon.
    Xiao Chuan Ong ; Willard A; Forssell M; Gittis A; Fedder GK
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4885-4888. PubMed ID: 28269365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating.
    Wang M; Fan Y; Li L; Wen F; Guo B; Jin M; Xu J; Zhou Y; Kang X; Ji B; Cheng Y; Wang G
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208323
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation.
    McAlinden N; Massoubre D; Richardson E; Gu E; Sakata S; Dawson MD; Mathieson K
    Opt Lett; 2013 Mar; 38(6):992-4. PubMed ID: 23503284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An integrated μLED optrode for optogenetic stimulation and electrical recording.
    Cao H; Gu L; Mohanty SK; Chiao JC
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording.
    Castagnola V; Descamps E; Lecestre A; Dahan L; Remaud J; Nowak LG; Bergaud C
    Biosens Bioelectron; 2015 May; 67():450-7. PubMed ID: 25256782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparison of insertion methods for surgical placement of penetrating neural interfaces.
    Thielen B; Meng E
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33845469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Development of An Implantable Optrode for Optogenetic Stimulation].
    Yue S; Yuan M; Zhang Y; Wang X; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity.
    Kim C; Jeong J; Kim SJ
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832357
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flexible optoelectric neural interfaces.
    Ahmed Z; Reddy JW; Malekoshoaraie MH; Hassanzade V; Kimukin I; Jain V; Chamanzar M
    Curr Opin Biotechnol; 2021 Dec; 72():121-130. PubMed ID: 34826682
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D silicon neural probe with integrated optical fibers for optogenetic modulation.
    Kim EG; Tu H; Luo H; Liu B; Bao S; Zhang J; Xu Y
    Lab Chip; 2015 Jul; 15(14):2939-49. PubMed ID: 26097907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multimode Optical Fibers for Optical Neural Interfaces.
    De Vittorio M; Pisanello F
    Adv Exp Med Biol; 2021; 1293():565-583. PubMed ID: 33398843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures.
    Eickenscheidt M; Herrmann T; Weisshap M; Mittnacht A; Rudmann L; Zeck G; Stieglitz T
    Biosens Bioelectron; 2022 Jun; 205():114090. PubMed ID: 35227972
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Silicon-Based Microfabrication of Free-Floating Neural Probes and Insertion Tool for Chronic Applications.
    Schander A; Stemmann H; Kreiter AK; Lang W
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new multi-site probe array with monolithically integrated parylene flexible cable for neural prostheses.
    Pang C; Cham J; Nenadic Z; Musallam S; Tai YC; Burdick J; Andersen R
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7114-7. PubMed ID: 17281915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs.
    Qiu P; Zhu S; Jin Z; Zhou X; Cui X; Tian P
    Opt Lett; 2022 Jan; 47(2):317-320. PubMed ID: 35030596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3200 ppi Matrix-Addressable Blue MicroLED Display.
    Wu MC; Chung MC; Wu CY
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014272
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Emerging trends in the development of flexible optrode arrays for electrophysiology.
    Almasri RM; Ladouceur F; Mawad D; Esrafilzadeh D; Firth J; Lehmann T; Poole-Warren LA; Lovell NH; Al Abed A
    APL Bioeng; 2023 Sep; 7(3):031503. PubMed ID: 37692375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optoelectronic and mechanical properties of microstructured polymer optical fiber neural probes.
    Sui K; Meneghetti M; Berg RW; Markos C
    Opt Express; 2023 Jun; 31(13):21563-21575. PubMed ID: 37381252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.