These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31456910)

  • 41. Quantifying the bias in the estimated treatment effect in randomized trials having interim analyses and a rule for early stopping for futility.
    Walter SD; Han H; Briel M; Guyatt GH
    Stat Med; 2017 Apr; 36(9):1506-1518. PubMed ID: 28183155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Statistical aspects of the TNK-S2B trial of tenecteplase versus alteplase in acute ischemic stroke: an efficient, dose-adaptive, seamless phase II/III design.
    Levin B; Thompson JL; Chakraborty B; Levy G; MacArthur R; Haley EC
    Clin Trials; 2011 Aug; 8(4):398-407. PubMed ID: 21737464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Bayesian predictive two-stage design for phase II clinical trials.
    Sambucini V
    Stat Med; 2008 Apr; 27(8):1199-224. PubMed ID: 17763528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simulation optimization for Bayesian multi-arm multi-stage clinical trial with binary endpoints.
    Yu Z; Ramakrishnan V; Meinzer C
    J Biopharm Stat; 2019; 29(2):306-317. PubMed ID: 30763151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bayesian predictive probabilities: a good way to monitor clinical trials.
    Ferreira D; Ludes PO; Diemunsch P; Noll E; Torp KD; Meyer N
    Br J Anaesth; 2021 Feb; 126(2):550-555. PubMed ID: 33129491
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Bayesian basket trial design that borrows information across strata based on the similarity between the posterior distributions of the response probability.
    Fujikawa K; Teramukai S; Yokota I; Daimon T
    Biom J; 2020 Mar; 62(2):330-338. PubMed ID: 31608505
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A review of methods for futility stopping based on conditional power.
    Lachin JM
    Stat Med; 2005 Sep; 24(18):2747-64. PubMed ID: 16134130
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bayesian sample size determination for phase IIA clinical trials using historical data and semi-parametric prior's elicitation.
    Berchialla P; Zohar S; Baldi I
    Pharm Stat; 2019 Mar; 18(2):198-211. PubMed ID: 30440109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimality criteria for futility stopping boundaries for group sequential designs with a continuous endpoint.
    Li X; Herrmann C; Rauch G
    BMC Med Res Methodol; 2020 Nov; 20(1):274. PubMed ID: 33153438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of Bayesian and frequentist group-sequential clinical trial designs.
    Stallard N; Todd S; Ryan EG; Gates S
    BMC Med Res Methodol; 2020 Jan; 20(1):4. PubMed ID: 31910813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A two-stage Bayesian design with sample size reestimation and subgroup analysis for phase II binary response trials.
    Zhong W; Koopmeiners JS; Carlin BP
    Contemp Clin Trials; 2013 Nov; 36(2):587-96. PubMed ID: 23583925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Utilizing Bayesian predictive power in clinical trial design.
    Harari O; Hsu G; Dron L; Park JJH; Thorlund K; Mills EJ
    Pharm Stat; 2020 Oct; ():. PubMed ID: 33090634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Bayesian sequential design with binary outcome.
    Zhu H; Yu Q; Mercante DE
    Pharm Stat; 2017 May; 16(3):192-200. PubMed ID: 28251815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advantages of Bayesian monitoring methods in deciding whether and when to stop a clinical trial: an example of a neonatal cooling trial.
    Pedroza C; Tyson JE; Das A; Laptook A; Bell EF; Shankaran S;
    Trials; 2016 Jul; 17(1):335. PubMed ID: 27450203
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bayesian sequential meta-analysis design in evaluating cardiovascular risk in a new antidiabetic drug development program.
    Chen MH; Ibrahim JG; Amy Xia H; Liu T; Hennessey V
    Stat Med; 2014 Apr; 33(9):1600-18. PubMed ID: 24343859
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex endpoints.
    Zhou H; Lee JJ; Yuan Y
    Stat Med; 2017 Sep; 36(21):3302-3314. PubMed ID: 28589563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A systematic survey of randomised trials that stopped early for reasons of futility.
    Walter SD; Han H; Guyatt GH; Bassler D; Bhatnagar N; Gloy V; Schandelmaier S; Briel M
    BMC Med Res Methodol; 2020 Jan; 20(1):10. PubMed ID: 31948397
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Bayesian adaptive dose selection procedure with an overdispersed count endpoint.
    Pozzi L; Schmidli H; Gasparini M; Racine-Poon A
    Stat Med; 2013 Dec; 32(28):5008-27. PubMed ID: 24022748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A two-stage phase II clinical trial design with nested criteria for early stopping and efficacy.
    DeVeaux M; Kane M; Wei W; Zelterman D
    Pharm Stat; 2019 Nov; 18(6):700-713. PubMed ID: 31507079
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bayesian single-to-double arm transition design using both short-term and long-term endpoints.
    Xu T; Shi H; Lin R
    Pharm Stat; 2023; 22(4):588-604. PubMed ID: 36755420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.