These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31457009)

  • 1. The
    Fisher P; Thomas-Oates J; Wood AJ; Ungar D
    Front Cell Dev Biol; 2019; 7():157. PubMed ID: 31457009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycan processing in the Golgi as optimal information coding that constrains cisternal number and enzyme specificity.
    Yadav A; Vagne Q; Sens P; Iyengar G; Rao M
    Elife; 2022 Feb; 11():. PubMed ID: 35175197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems analysis of N-glycan processing in mammalian cells.
    Hossler P; Mulukutla BC; Hu WS
    PLoS One; 2007 Aug; 2(8):e713. PubMed ID: 17684559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the
    Sahu P; Balakrishnan A; Di Martino R; Luini A; Russo D
    Front Cell Dev Biol; 2022; 10():842448. PubMed ID: 35465326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae.
    Piirainen MA; Boer H; de Ruijter JC; Frey AD
    Glycoconj J; 2016 Apr; 33(2):189-99. PubMed ID: 26983412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycan Remodeling of Human Erythropoietin (EPO) Through Combined Mammalian Cell Engineering and Chemoenzymatic Transglycosylation.
    Yang Q; An Y; Zhu S; Zhang R; Loke CM; Cipollo JF; Wang LX
    ACS Chem Biol; 2017 Jun; 12(6):1665-1673. PubMed ID: 28452462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Glycan Processing Reveals Golgi-Enzyme Homeostasis upon Trafficking Defects and Cellular Differentiation.
    Fisher P; Spencer H; Thomas-Oates J; Wood AJ; Ungar D
    Cell Rep; 2019 Apr; 27(4):1231-1243.e6. PubMed ID: 31018136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling N-Glycosylation: A Systems Biology Approach for Evaluating Changes in the Steady-State Organization of Golgi-Resident Proteins.
    Morgan R; West B; Wood AJ; Ungar D
    Methods Mol Biol; 2023; 2557():663-690. PubMed ID: 36512244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-compartmental organization of Golgi-resident N-glycan processing enzymes in plants.
    Schoberer J; Strasser R
    Mol Plant; 2011 Mar; 4(2):220-8. PubMed ID: 21307368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling human congenital disorder of glycosylation type IIa in the mouse: conservation of asparagine-linked glycan-dependent functions in mammalian physiology and insights into disease pathogenesis.
    Wang Y; Tan J; Sutton-Smith M; Ditto D; Panico M; Campbell RM; Varki NM; Long JM; Jaeken J; Levinson SR; Wynshaw-Boris A; Morris HR; Le D; Dell A; Schachter H; Marth JD
    Glycobiology; 2001 Dec; 11(12):1051-70. PubMed ID: 11805078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging the Gap between Glycosylation and Vesicle Traffic.
    Fisher P; Ungar D
    Front Cell Dev Biol; 2016; 4():15. PubMed ID: 27014691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation of genome to glycome: role of the Golgi apparatus.
    Pothukuchi P; Agliarulo I; Russo D; Rizzo R; Russo F; Parashuraman S
    FEBS Lett; 2019 Sep; 593(17):2390-2411. PubMed ID: 31330561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel glycan processing enzyme with exo-acting β-allosidase activity in the Golgi apparatus using a new platform for the synthesis of fluorescent substrates.
    Hakamata W; Miura K; Hirano T; Nishio T
    Bioorg Med Chem; 2015 Jan; 23(1):73-9. PubMed ID: 25497961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Golgi glycosylation meets and needs trafficking: the case of the COG complex.
    Reynders E; Foulquier F; Annaert W; Matthijs G
    Glycobiology; 2011 Jul; 21(7):853-63. PubMed ID: 21112967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cisterna-specific localization of glycosylation-related proteins to the Golgi apparatus.
    Yamamoto-Hino M; Abe M; Shibano T; Setoguchi Y; Awano W; Ueda R; Okano H; Goto S
    Cell Struct Funct; 2012; 37(1):55-63. PubMed ID: 22251795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of protein/glycan interaction on site-specific glycan heterogeneity.
    Losfeld ME; Scibona E; Lin CW; Villiger TK; Gauss R; Morbidelli M; Aebi M
    FASEB J; 2017 Oct; 31(10):4623-4635. PubMed ID: 28679530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Modeling of Glycan Processing in the Golgi for Investigating Changes in the Arrangements of Biosynthetic Enzymes.
    West B; Wood AJ; Ungar D
    Methods Mol Biol; 2022; 2370():209-222. PubMed ID: 34611871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides.
    Wormald MR; Rudd PM; Harvey DJ; Chang SC; Scragg IG; Dwek RA
    Biochemistry; 1997 Feb; 36(6):1370-80. PubMed ID: 9063885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review.
    Wopereis S; Lefeber DJ; Morava E; Wevers RA
    Clin Chem; 2006 Apr; 52(4):574-600. PubMed ID: 16497938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Plant-Based Glycan Engineering.
    Montero-Morales L; Steinkellner H
    Front Bioeng Biotechnol; 2018; 6():81. PubMed ID: 29963553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.