These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31457115)

  • 1. Metallic Nanodroplet Induced Coulomb Catalysis for Off-Resonant Plasmonic Enhancement of Photoemission in Semiconductors.
    Neogi A; Gryczynski K; Llopis A; Lin J; Main K; Shimada R; Wang Z; Lee J; Salamo G; Krokhin A
    ACS Omega; 2016 Jul; 1(1):19-28. PubMed ID: 31457115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well.
    Ashalley E; Gryczynski K; Wang Z; Salamo G; Neogi A
    Nanoscale; 2019 Mar; 11(9):3827-3836. PubMed ID: 30633286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure.
    Zhong JH; Vogelsang J; Yi JM; Wang D; Wittenbecher L; Mikaelsson S; Korte A; Chimeh A; Arnold CL; Schaaf P; Runge E; Huillier AL; Mikkelsen A; Lienau C
    Nat Commun; 2020 Mar; 11(1):1464. PubMed ID: 32193407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition Between Resonant Plasmonic Coupling and Electrostatic Interaction in Reduced Graphene Oxide Quantum Dots.
    Karna S; Mahat M; Choi TY; Shimada R; Wang Z; Neogi A
    Sci Rep; 2016 Nov; 6():36898. PubMed ID: 27872487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoantennas Involved Optical Plasmonic Cavity for Improved Luminescence of Quantum Dots Light-Emitting Diodes.
    Wang H; Guo Y; Zang J; Hao H; Wang L; Liu T; Bian H; Jiang R; Wen R; Li H; Tong Y; Wang H
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44760-44767. PubMed ID: 34505502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metallic nanoparticles enhanced the spontaneous emission of semiconductor nanocrystals embedded in nanoimprinted photonic crystals.
    Reboud V; Lévêque G; Striccoli M; Placido T; Panniello A; Curri ML; Alducin JA; Kehoe T; Kehagias N; Mecerreyes D; Newcomb SB; Iacopino D; Redmond G; Sotomayor Torres CM
    Nanoscale; 2013 Jan; 5(1):239-45. PubMed ID: 23154433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications.
    Kochuveedu ST; Jang YH; Kim DH
    Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Nanowire Hybrids for Plasmon-Enhanced Light-Matter Interaction in 2D Semiconductors.
    Kim JH; Lee HS; An GH; Lee J; Oh HM; Choi J; Lee YH
    ACS Nano; 2020 Sep; 14(9):11985-11994. PubMed ID: 32840363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters.
    Fadil A; Ou Y; Iida D; Kamiyama S; Petersen PM; Ou H
    Nanoscale; 2016 Sep; 8(36):16340-16348. PubMed ID: 27714107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiband enhanced second-harmonic generation via plasmon hybridization.
    Shen S; Yang W; Shan J; Sun G; Shih TM; Zhou Y; Yang Z
    J Chem Phys; 2020 Oct; 153(15):151102. PubMed ID: 33092367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays.
    Henson J; Dimakis E; DiMaria J; Li R; Minissale S; Dal Negro L; Moustakas TD; Paiella R
    Opt Express; 2010 Sep; 18(20):21322-9. PubMed ID: 20941028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significant improvement of near-UV electroluminescence from ZnO quantum dot LEDs via coupling with carbon nanodot surface plasmons.
    Zhang C; Zhu F; Xu H; Liu W; Yang L; Wang Z; Ma J; Kang Z; Liu Y
    Nanoscale; 2017 Oct; 9(38):14592-14601. PubMed ID: 28933500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles.
    Walsh GF; Dal Negro L
    Nano Lett; 2013 Feb; 13(2):786-92. PubMed ID: 23339774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration.
    Liu Y; Jiang M; Zhang Z; Li B; Zhao H; Shan C; Shen D
    Nanoscale; 2018 Mar; 10(12):5678-5688. PubMed ID: 29532836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects.
    Huang X; Jiang C; Du C; Jing L; Liu M; Hu W; Wang ZL
    ACS Nano; 2016 Dec; 10(12):11420-11427. PubMed ID: 28024322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.