These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31457450)

  • 1. From pH- to Light-Response: Postpolymerization Modification of Polymer Brushes Grafted onto Microporous Polymeric Membranes.
    Dübner M; Naoum ME; Spencer ND; Padeste C
    ACS Omega; 2017 Feb; 2(2):455-461. PubMed ID: 31457450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-responsive polymer surfaces via postpolymerization modification of grafted polymer-brush structures.
    Dübner M; Spencer ND; Padeste C
    Langmuir; 2014 Dec; 30(49):14971-81. PubMed ID: 25419582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Light-Switching of Enzymatic Activity on Orthogonally Functionalized Polymer Brushes.
    Dübner M; Cadarso VJ; Gevrek TN; Sanyal A; Spencer ND; Padeste C
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9245-9249. PubMed ID: 28266210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of photochromic spiropyran polymer brushes via surface-initiated, ring-opening metathesis polymerization: reversible photocontrol of wetting behavior and solvent dependent morphology changes.
    Samanta S; Locklin J
    Langmuir; 2008 Sep; 24(17):9558-65. PubMed ID: 18642863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N; Klok HA
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4631-40. PubMed ID: 25675859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Thiol-Ene "Clickable" Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography.
    Dübner M; Gevrek TN; Sanyal A; Spencer ND; Padeste C
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11337-45. PubMed ID: 25978723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer.
    He D; Arisaka Y; Masuda K; Yamamoto M; Takeda N
    Acta Biomater; 2017 Mar; 51():101-111. PubMed ID: 28110068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems.
    Pauly AC; Schöller K; Baumann L; Rossi RM; Dustmann K; Ziener U; de Courten D; Wolf M; Boesel LF; Scherer LJ
    Sci Technol Adv Mater; 2015 Jun; 16(3):034604. PubMed ID: 27877791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grafting photochromic spiropyran polymer brushes on graphene oxide surfaces
    Li B; Zhu W; Liu J; Sun S; Zhang Y; Zhang D; Li C; Shi J; Shi Z
    RSC Adv; 2024 Jan; 14(6):3748-3756. PubMed ID: 38274163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Excimer Laser for Manufacturing Stimuli Responsive Membranes.
    Sancaktar E
    Membranes (Basel); 2023 Mar; 13(4):. PubMed ID: 37103825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films.
    Pei Y; Travas-Sejdic J; Williams DE
    Langmuir; 2012 May; 28(21):8072-83. PubMed ID: 22551237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light and pH dual-responsive spiropyran-based cellulose nanocrystals.
    Ye X; Wang A; Zhang D; Zhou P; Zhu P
    RSC Adv; 2023 Apr; 13(17):11495-11502. PubMed ID: 37063713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.
    Qu JB; Xu YL; Liu JY; Zeng JB; Chen YL; Zhou WQ; Liu JG
    J Chromatogr A; 2016 Apr; 1441():60-7. PubMed ID: 26947166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces.
    Santonicola MG; de Groot GW; Memesa M; Meszyńska A; Vancso GJ
    Langmuir; 2010 Nov; 26(22):17513-9. PubMed ID: 20932041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-responsive anti-fouling polyzwitterionic brushes: a mesoscopic simulation.
    Miao Z; Zhou J
    J Mater Chem B; 2024 Aug; 12(33):8076-8086. PubMed ID: 38973671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants.
    Kan KH; Li J; Wijesekera K; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitchable surface wettability of ultrahydrophobic nanofibrous coatings composed of spiropyran-acrylic copolymers.
    Nezhadghaffar-Borhani E; Abdollahi A; Roghani-Mamaqani H; Salami-Kalajahi M
    J Colloid Interface Sci; 2021 Jul; 593():67-78. PubMed ID: 33744553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer.
    Bar C; Çağlar N; Uz M; Mallapragada SK; Altinkaya SA
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31367-31377. PubMed ID: 31424905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Aldehyde-Functional Diblock Copolymer Spheres onto Surface-Grafted Polymer Brushes via Dynamic Covalent Chemistry Enables Friction Modification.
    Johnson EC; Varlas S; Norvilaite O; Neal TJ; Brotherton EE; Sanderson G; Leggett GJ; Armes SP
    Chem Mater; 2023 Aug; 35(15):6109-6122. PubMed ID: 37576584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.