These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31457482)

  • 1. Design Principle and Loss Engineering for Photovoltaic-Electrolysis Cell System.
    Chang WJ; Lee KH; Ha H; Jin K; Kim G; Hwang ST; Lee HM; Ahn SW; Yoon W; Seo H; Hong JS; Go YK; Ha JI; Nam KT
    ACS Omega; 2017 Mar; 2(3):1009-1018. PubMed ID: 31457482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
    Jia J; Seitz LC; Benck JD; Huo Y; Chen Y; Ng JW; Bilir T; Harris JS; Jaramillo TF
    Nat Commun; 2016 Oct; 7():13237. PubMed ID: 27796309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoupled Water Electrolysis Driven by 1 cm
    Lv F; Qin Z; Wu J; Pan L; Liu L; Chen Y; Zhao Y
    ChemSusChem; 2023 Jan; 16(1):e202201689. PubMed ID: 36279197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of electric power flow on solar radiation power in compact photovoltaic system containing SiC-based inverter with spherical Si solar cells.
    Ando Y; Oku T; Yasuda M; Ushijima K; Matsuo H; Murozono M
    Heliyon; 2020 Jan; 6(1):e03094. PubMed ID: 31909264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar to fuels conversion technologies: a perspective.
    Tuller HL
    Mater Renew Sustain Energy; 2017; 6(1):3. PubMed ID: 28203516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Photo-Electrochemically Generated Hydrogen with Fuel Cell Based Micro-Combined Heat and Power: A Dynamic System Modelling Study.
    Ronaszegi K; Fraga ES; Darr J; Shearing PR; Brett DJL
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Versatile and Adaptable Artificial Leaf with Floatability and Planar Compact Design Applicable in Various Natural Environments.
    Kim S; Kim T; Lee S; Baek S; Park T; Yong K
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28714231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sixteen Percent Solar-to-Hydrogen Efficiency Using a Power-Matched Alkaline Electrolyzer and a High Concentrated Solar Cell: Effect of Operating Parameters.
    M Bashir S; Nadeem MA; Al-Oufi M; Al-Hakami M; Isimjan TT; Idriss H
    ACS Omega; 2020 May; 5(18):10510-10518. PubMed ID: 32426608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.
    Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS
    Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing Energy Sustainability Through Solar-to-Fuel Technologies: From Materials to Devices and Systems.
    Li X; Yu Z; Zhang C; Li B; Wu X; Liu Y; Zhu Z
    Small Methods; 2024 Jul; ():e2400683. PubMed ID: 39039980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Solar-to-Hydrogen Conversion Efficiency at pH 7 Based on a PV-EC Cell with an Oligomeric Molecular Anode.
    Shi Y; Hsieh TY; Hoque MA; Cambarau W; Narbey S; Gimbert-Suriñach C; Palomares E; Lanza M; Llobet A
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55856-55864. PubMed ID: 33258374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ten-percent solar-to-fuel conversion with nonprecious materials.
    Cox CR; Lee JZ; Nocera DG; Buonassisi T
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14057-61. PubMed ID: 25225379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 25.1% Efficient Stand-Alone Solar Chloralkali Generator Employing a Microtracking Solar Concentrator.
    Chinello E; Modestino MA; Coulot L; Ackermann M; Gerlich F; Psaltis D; Moser C
    Glob Chall; 2017 Dec; 1(9):1700095. PubMed ID: 31565298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.
    Kim JH; Hansora D; Sharma P; Jang JW; Lee JS
    Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost high-efficiency system for solar-driven conversion of CO
    Huan TN; Dalla Corte DA; Lamaison S; Karapinar D; Lutz L; Menguy N; Foldyna M; Turren-Cruz SH; Hagfeldt A; Bella F; Fontecave M; Mougel V
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9735-9740. PubMed ID: 30918130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation.
    Choi K; Kim K; Moon IK; Bang J; Oh J
    Nanoscale; 2019 Aug; 11(32):15367-15373. PubMed ID: 31389459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.