These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31457554)

  • 1. Nanoconfined NaAlH
    Huen P; Peru F; Charalambopoulou G; Steriotis TA; Jensen TR; Ravnsbæk DB
    ACS Omega; 2017 May; 2(5):1956-1967. PubMed ID: 31457554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume.
    Nielsen TK; Javadian P; Polanski M; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    Nanoscale; 2014 Jan; 6(1):599-607. PubMed ID: 24247423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH
    Do HW; Kim H; Cho ES
    RSC Adv; 2021 Oct; 11(52):32533-32540. PubMed ID: 35493568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined NaAlH
    Gao Q; Xia G; Yu X
    Nanoscale; 2017 Oct; 9(38):14612-14619. PubMed ID: 28936500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel FTIR-ATR spectroscopy and gravimetry for the in situ hydrogen desorption measurement of NaAlH
    Enders M; Kleber M; Derscheid G; Hofmann K; Bauer HD; Scheppat B
    Appl Opt; 2020 Oct; 59(30):9510-9519. PubMed ID: 33104671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and Catalytic Activity of a Novel Nanocrystalline ZrO
    Zhang X; Wu R; Wang Z; Gao M; Pan H; Liu Y
    Chem Asian J; 2016 Dec; 11(24):3541-3549. PubMed ID: 27749996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron X-ray studies of Al(1-y)Ti(y) formation and re-hydriding inhibition in Ti-enhanced NaAlH4.
    Brinks HW; Hauback BC; Srinivasan SS; Jensen CM
    J Phys Chem B; 2005 Aug; 109(33):15780-5. PubMed ID: 16853003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries.
    Raić M; Mikac L; Marić I; Štefanić G; Škrabić M; Gotić M; Ivanda M
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32079341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Binary Metal (Ni, Co) Selenite as Li-Ion Battery Anode Materials and Their Conversion Reaction Mechanism with Li Ions.
    Park GD; Yang SJ; Lee JH; Kang YC
    Small; 2019 Dec; 15(51):e1905289. PubMed ID: 31736246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Li
    Yang Q; Lu F; Liu Y; Zhang Y; Wang X; Pang Y; Zheng S
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Lithium Storage Mechanism of N-Doped Carbon-Modified Cu
    Tian G; Huang C; Luo X; Zhao Z; Peng Y; Gao Y; Tang N; Dsoke S
    Chemistry; 2021 Oct; 27(55):13774-13782. PubMed ID: 34318954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO
    Surendran A; Enale H; Thottungal A; Sarapulova A; Knapp M; Nishanthi ST; Dixon D; Bhaskar A
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7856-7868. PubMed ID: 35107246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Ni in increasing the reversibility of the hydrogen release from nanoconfined LiBH4.
    Ngene P; Verkuijlen MH; Zheng Q; Kragten J; van Bentum PJ; Bitter JH; de Jongh PE
    Faraday Discuss; 2011; 151():47-58; discussion 95-115. PubMed ID: 22455062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium Hydride Nanoplates Enable 5 wt% of Reversible Hydrogen Storage by Sodium Alanate below 80°C.
    Ren Z; Zhang X; Li HW; Huang Z; Hu J; Gao M; Pan H; Liu Y
    Research (Wash D C); 2021; 2021():9819176. PubMed ID: 34993488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-VPO
    Fedotov SS; Samarin AS; Nikitina VA; Stevenson KJ; Abakumov AM; Antipov EV
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12431-12440. PubMed ID: 30827092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries.
    Ahmed F; Almutairi G; Hasan PMZ; Rehman S; Kumar S; Shaalan NM; Aljaafari A; Alshoaibi A; AlOtaibi B; Khan K
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility.
    Park MG; Lee DH; Jung H; Choi JH; Park CM
    ACS Nano; 2018 Mar; 12(3):2955-2967. PubMed ID: 29505237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances and Perspectives of Carbon-Based Nanostructures as Anode Materials for Li-ion Batteries.
    Roselin LS; Juang RS; Hsieh CT; Sagadevan S; Umar A; Selvin R; Hegazy HH
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30991665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of the Binder and Buffering Matrix on InSb-Based Anodes for High-Performance Rechargeable Li-Ion Batteries.
    Hoang Huy VP; Kim IT; Hur J
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.