These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31457667)

  • 1. Visible-Light-Induced Water Splitting Based on a Novel α-Fe
    Natarajan K; Saraf M; Mobin SM
    ACS Omega; 2017 Jul; 2(7):3447-3456. PubMed ID: 31457667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light driven CZTS QDs/
    Ikram A; Zulfequar M
    Nanotechnology; 2023 May; 34(31):. PubMed ID: 37137292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of charge transfer cascades in α-Fe
    Minguzzi A; Naldoni A; Lugaresi O; Achilli E; D'Acapito F; Malara F; Locatelli C; Vertova A; Rondinini S; Ghigna P
    Phys Chem Chem Phys; 2017 Feb; 19(8):5715-5720. PubMed ID: 28230223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal Synthesis in Gap: Conformal Deposition of Textured Hematite Thin Films for Efficient Photoelectrochemical Water Splitting.
    Kong H; Park JS; Kim JH; Hwang S; Yeo J
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16515-16526. PubMed ID: 35362321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy.
    Pei GX; Wijten JHJ; Weckhuysen BM
    Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradient doping of phosphorus in Fe
    Luo Z; Li C; Liu S; Wang T; Gong J
    Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano multi-layered HfO
    Alhabradi M; Yang X; Alruwaili M; Tahir AA
    Heliyon; 2024 Mar; 10(5):e27078. PubMed ID: 38439859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.
    Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R
    ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertically Aligned CdO-Decked α-Fe
    Alhabradi M; Nundy S; Ghosh A; Tahir AA
    ACS Omega; 2022 Aug; 7(32):28396-28407. PubMed ID: 35990474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.
    Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.