These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31457677)

  • 1. Electroless Deposition and Ignition Properties of Si/Fe
    Huang S; Deng S; Jiang Y; Zhao J; Zheng X
    ACS Omega; 2017 Jul; 2(7):3596-3600. PubMed ID: 31457677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quo Vadis, Nanothermite? A Review of Recent Progress.
    Polis M; Stolarczyk A; Glosz K; Jarosz T
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the reaction mechanism of Al/CuO nanocomposites doped with ammonium perchlorate.
    Wang CA; Xu J; Dai J; Wang Y; Shen Y; Zhang Z; Shen R; Ye Y
    Nanotechnology; 2020 Apr; 31(25):255401. PubMed ID: 32126531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Thermal and Optical Ignition of Silicon Nanoparticles and Micron Particles.
    Huang S; Parimi VS; Deng S; Lingamneni S; Zheng X
    Nano Lett; 2017 Oct; 17(10):5925-5930. PubMed ID: 28873319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver ferrite: a superior oxidizer for thermite-driven biocidal nanoenergetic materials.
    Wu T; Zachariah MR
    RSC Adv; 2019 Jan; 9(4):1831-1840. PubMed ID: 35516147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fluoropolymer content on thermal and combustion performance of direct writing high-solid nanothermite composite.
    Jiao Y; Li S; Li G; Luo Y
    RSC Adv; 2022 Feb; 12(9):5612-5618. PubMed ID: 35425591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on the mechanical and reactive behavior of three fluorine-containing thermites.
    Wu J; Liu Q; Feng B; Wu S; Zhang S; Gao Z; Yin Q; Li Y; Xiao L; Huang J
    RSC Adv; 2020 Feb; 10(10):5533-5539. PubMed ID: 35497435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the state of matter of KCIO
    Chen J; Li S; Dai M; An M; Song R; Chen Y; Song J; Tian Q; Zhong X; Yan Q
    BMC Chem; 2024 May; 18(1):91. PubMed ID: 38724989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart Electromagnetic Thermites: GO/rGO Nanoscale Thermite Composites with Thermally Switchable Microwave Ignitability.
    Barkley SJ; Lawrence AR; Zohair M; Smithhisler OL; Pint CL; Michael JB; Sippel TR
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39678-39688. PubMed ID: 34232011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells.
    Ramadurgam S; Lin TG; Yang C
    Nano Lett; 2014 Aug; 14(8):4517-22. PubMed ID: 24971707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanothermite with Meringue-like Morphology: From Loose Powder to Ultra-porous Objects.
    Martin C; Comet M; Schnell F; Spitzer D
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanodiamond for tuning the properties of energetic composites.
    Pichot V; Comet M; Miesch J; Spitzer D
    J Hazard Mater; 2015 Dec; 300():194-201. PubMed ID: 26184802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of highly exothermic CuO@Al nanothermites via self-assembly approach.
    Wang Q; Ma Y; Wang Y; Bao H; Li A; Xu P; Li X; Yang W
    Nanotechnology; 2020 Jan; 31(5):055601. PubMed ID: 31622966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the dominant mechanisms in burn rate increase of thermite nanolaminates incorporating nanoparticle inclusions.
    Julien B; Wang H; Tichtchenko E; Pelloquin S; Esteve A; Zachariah MR; Rossi C
    Nanotechnology; 2021 Mar; 32(21):. PubMed ID: 33592601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combustion Characteristics of Physically Mixed 40 nm Aluminum/Copper Oxide Nanothermites Using Laser Ignition.
    Saceleanu F; Idir M; Chaumeix N; Wen JZ
    Front Chem; 2018; 6():465. PubMed ID: 30356693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doped δ-bismuth oxides to investigate oxygen ion transport as a metric for condensed phase thermite ignition.
    Wang X; Zhou W; DeLisio JB; Egan GC; Zachariah MR
    Phys Chem Chem Phys; 2017 May; 19(20):12749-12758. PubMed ID: 28484752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Different Nanocarbon Materials on the Properties of Al/MoO
    Zhang M; Ren H; Cui Q; Li H; Chen Y
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nanocomposite synthesis on the combustion performance of a ternary thermite.
    Prentice D; Pantoya ML; Clapsaddle BJ
    J Phys Chem B; 2005 Nov; 109(43):20180-5. PubMed ID: 16853608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of RDX/F2311/Fe
    Zhang Z; Jiang D; Yang L; Song W; Wang R; Huang Q
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.